ETS de

Ingenieria
Informatica

UNIVERSIDAD NACIONAL DE EDUCACION A DISTANCIA

Incremental SAT-based Detection
of Core and Dead Features in
Configuration Models

Luis CAMBELO GUTIERREZ

Master Universitario de Investigacion en Ingenieria de
Software y Sistemas Informaticos

Itinerario: Ingenieria de Software - 31105151

Directores:
Rubén Heradio Gil
David Fernandez Amoros

ii

Resumen

Los sistemas de software son cada vez mas configurables. Un claro ejem-
plo es el Kernel de Linux, que puede adaptarse a una extraordinaria var-
iedad de dispositivos de hardware (teléfonos inteligentes, computadoras
portatiles, clusteres de computadoras, etc.) gracias a las miles de carac-
teristicas configurables que admite.

Un problema central en el analisis de este tipo de sistema altamente
configurable es la deteccion automatica de caracteristicas esenciales e in-
activas. Las caracteristicas esenciales son aquellas que deben incluirse en
cada configuracién. Por el contrario, las caracteristicas muertas son aquel-
las que, debido a sus incompatibilidades con otras funciones, no se pueden
activar en ninguna configuracion y, por lo tanto, deben eliminarse durante
el mantenimiento del sistema.

En la literatura de ingenieria de software, y particularmente en el area
de las linea de productos software, las caracteristicas esenciales y muer-
tas se identifican tipicamente llamando masivamente a un SAT-solver para
analizar una férmula proposicional que codifica el modelo configurable.
En la medida de nuestro conocimiento, esta tesis es el primer trabajo que
establece una conexion entre las caracteristicas centrales/muertas y el back-
bone de las féormulas proposicionales, mostrando su total equivalencia.
Gracias a esta equivalencia, esta tesis proporciona una implementacion
funcional de varios algoritmos de ultima generacion para la deteccion de
backbones y prueba su notable escalabilidad para detectar caracteristicas
esenciales y muertas en modelos configurables.

Nuestra implementacion se basa en la interfaz IPASIR, que es una forma
estandar de interactuar con los SAT-solvers de forma incremental. De esta
manera, nuestro coddigo se desacopla de cualquier solucionador SAT-solver
especifico (es decir, funciona con cualquier solucionador que implemente
el estandar)

Palabras clave: SAT solver, caracteristica esencial, caracteristica muerta,
backbone, IPASIR, minibones, EDUCIBone, modelo de configuracion.

iv

Abstract

Software systems are becoming increasingly configurable. A clear exam-
ple is the Linux Kernel, which can be adapted for an extraordinary va-
riety of hardware devices (smartphones, laptops, computer clusters, etc.)
thanks to the thousands of configurable features it supports.

One central problem in analyzing this kind of highly configurable sys-
tem is the automated detection of core and dead features. Core features are
those that must be included in every configuration and thus are entirely
essential. In contrast, dead features are those that, because of their incom-
patibilities with other features, cannot be activated in any configuration
and thus should be removed during the system maintenance.

In the software engineering literature, and particularly in the software
product line field, core and dead features are typically identified by calling
a SAT-solver massively to analyze a propositional formula that encodes the
configurable model. To the extent of our knowledge, this thesis is the first
work that makes a connection between core/dead features and the back-
bone of propositional formulas, showing their total equivalence. Thanks
to this equivalence, this thesis provides the functional implementation of
several state-of-the-art algorithms for detecting backbones, and tests their
remarkable scalability to detect core and dead features in configurable
models.

Our implementation is based on the IPASIR interface, which is a stan-
dard way to interact with SAT-solvers incrementally. This way, our code is
decoupled from any specific SAT-solver (i.e., it works with any solver that
implements the standard).

Keywords: SATsolver, dead feature, core feature, variability model,
configuration model, backbone, IPASIR, minibones, EDUCIBone.

vi

Acknowledgements

A Charo, David y Sara

Luis Cambelo Gutiérrez
Madrid
February 2023

viii

Contents

List of tables xi
List of figures xii
1 Chapter 1: Introduction 1
1.1 Objective e 3
1.2 Concepts and Definitions 3
1.3 Document Structure 0oL 7
2 Chapter 2: Related Work 9
2.1 Feature Models and SAT-solvers 9
2.2 IPASIR e 10
23 Backboneso o oo o 13
2.3.1 Applications of backbones 15
3 Chapter 3: Computing Backbones 17
3.1 Backbone computation using IPASIR 17
3.1.1 Algorithm 1: Enumeration-based 18

3.1.2 Algorithm 2: Iterative testing - Two tests per
variable 21

3.2

3.1.3 Algorithm 3: Iterative testing - One test per variable 23
3.1.4 Algorithm 4: Iterative algorithm with the comple-

ment of backbone estimate 25
3.1.5 Algorithm 5: Chunking 28
3.1.6 Algorthm 6: Core-based Algorithm 30
3.1.7 Algorthm 7: Core-based Algorithm with Chunking . 34
Heuristics e 36
3.2.1 Insertion of the backbone into the formula 37

3.2.2 Literal filtering, 37

3.2.3 Identification of one-literal clauses
3.2.4 Cascading CNFliterals
3.2.5 Coding and performance
3.3 Tweaking the Algorithms,
3.3.1 Enhancing Algorithm 3 - Versiona
3.3.2 Enhancing Algorithm 7 - Versiona

Chapter 4: Experimental Validation

4.1 ExperimentalSetup

4.2 RQ1: Best IPASIRBoNES/SAT combination
4.2.1 IPASIRBONES-1
4.2.2 IPASIRBONES-2 v i i i ittt
423 IPASIRBONES-3
4.2.4 IPASIRBONES-4
425 IPASIRBONES-5 oo
4.2.6 IPASIRBONES-6
4.2.7 IPASIRBONES-7 ittt i
4.2.8 Enhanced Algorithms: IPASIRBoNEs-3a&7a
4.2.9 Conclusions on individual algorithms

4.3 RQ2: IPASIRBONES vs. state-of-the-arttools

Chapter 5: Conclusions and Future Work
5.1 Conclusions
52 FutureWork

References

3.1
4.1

4.2
4.3
4.4
4.5
4.6
4.7

List of Tables

Direct backbone identification from CNF formula 41

abcdsat_i20 compared to other SAT-solvers with IPASIRBONEs-

2 49
Elapsed computing time vs. CPU CORE Time (seconds) . . 52
SAT time comparison for IPASIRBoNEs-3 (seconds) 56
Best solver per algorithm (seconds) 67
Total times for the different algorithms and solvers (seconds) 68
Other tools performance (seconds) 70

Final performance comparison table (seconds) 71

xii

LIST OF TABLES

List of Figures

1.1 An example of feature model taken from [Krieter et al., 2021]

3.1 Algorithm 1 - Enumeration-based backbone computation .
3.2 Running Algorithm 1 on buildroot.cnf
3.3 Algorithm 2 - Iterative algorithm - Two tests per variable
3.4 Running Algorithm 2 on buildroot.cnf
3.5 Algorithm 3 - One test per variable
3.6 Running Algorithm 3 on buildroot.cnf
3.7 Algorithm 4 - Complement of backbone estimate
3.8 Running Algorithm 4 on buildroot.cnf
3.9 Algorithm 5 - Chunking Algorithm
3.10 Running Algorithm 5 on buildroot.cnf
3.11 Algorithm 6 -Corebased
3.12 Running Algorithm 6 on buildroot.cnf
3.13 Algorithm 7 - Core based with chunking
3.14 Running Algorithm 7 on buildroot.cnf
3.15 Execution of Algorithm 3a with buildroot.cnf model . . .
3.16 Execution of Algorithm 7a with buildroot.cnf model . . .
3.17 Execution of algorithm 7a (cadicalsc2020 solver) with buil-
droot.cnfmodel

4.1 IPASIRBoNEs] - Time vs. variables for MIG
4.2 |PASIRBoNEs] - Time vs. variablesfor FA
4.3 |PASIRBoNEs-2 - Time vs. variables for MIG
4.4 IPASIRBONEs-2 - Time vs. variables for FA
4.5 |PASIRBoNEs-3 - Time vs. variables for MIG
4.6 |PASIRBoNEs-3 - Time vs. backbones for MIG
4.7 IPASIRBoNEs-3 - Time vs. variables for FA
4.8 |IPASIRBoONES-3 - Time vs. backbones for FA

2

18
20
21
22
23
25
26
27
28
30
31
34
34
36
44
46

Xiv LIST OF FIGURES
4.9 |PASIRBoNES-4 - Time vs. variables for MIG 59
4.10 IPASIRBoNES-4 - Time vs. variables for FA 59
4.11 IPASIRBoONES-5 - Time vs. variables for MIG 60
4.12 IPASIRBoNES-5 - Time vs. variablesfor FA 61
4.13 IPASIRBoNEs-6- Time vs. variables for MIG 62
4.14 IPASIRBoNEs-6- Time vs. variablesfor FA 62
4.15 IPASIRBoNEs-7 - Time vs. variables for MIG 63
4.16 IPASIRBoNEs-7 - Time vs. variables for FA 63
4.17 IPASIRBoNEs-3a- Time vs. variables for MIG 64
4.18 IPASIRBoNEs-3a- Time vs. variablesfor FA 65
4.19 IPASIRBoNEs-7a - Time vs. variables for MIG. 65
4.20 IPASIRBoNEs-7a - Time vs. variablesfor FA 66
4.21 Other tools - Time vs. variables for MIG 69

4.22 Other tools - Time vs. variablesfor FA 70

Chapter 1: Introduction

The number of highly configurable software systems is increasing. A very
illustrative example is the Linux Kernel, which can be configured for an
immense variety of hardware devices thanks to the existing thousands of
configurable features it currently supports and the capacity to add new
ones. Devices supported by some kind of Linux distribution range from
smartphones, desktop or laptop computers, and even 100% of the top-500
most powerful supercomputers. These software systems evolve over time,
and new features are added to the feature base, so they can be selected or
deselected to produce a final configuration. This evolution leads to inter-
mediate scenarios where some features are mandatory (also known as core
features) and some other features became obsolete or incompatible and,
therefore, can not be chosen (dead features). Once these core and dead fea-
tures have been identified, software engineers can continue selecting and
deselecting additional features into the desired configuration. Note this
process is incremental and, most times bidirectional: the designer might
choose to add a new feature and observe that feature, in turn, will require

other features to be selected or even be deselected due to incompatibilities.

Managing this process when the number of features is small (Figure

1.1, taken from [Krieter et al., 2021]), is a tractable problem, but for highly

2 Chapter 1: Introduction

configurable systems (the Linux Kernel has more than 13,000 features),

the problem becomes intractable.

Server Legend:

® Mandatory

O Optional

/‘\ Or Group
AAlternative Group

\ Linux‘ |Windows \ | Mac| ‘EXT4 | \ NTFS \ ‘APFS |

(Windows — NTFS) A (Mac — APFS) A
(Linux V NTFS v APFS) A (Server — =Login)

Figure 1.1: An example of feature model taken from [Krieter et al., 2021]

Efficiently identifying those core and dead features while working with
a configuration model, either as a background task or in an interactive set-
ting is an active research stream. There are several lines of research (refer
to Chapter 2), some of them are: Binary Decision Diagrams (BDD), Strong
Dependencies, SAT-solvers, every one with its own highlights and defi-

ciencies.

[Batory, 2005] showed the equivalence between feature models and
propositional logic, which supports the automated analysis of models us-
ing SAT-solver. A SAT-solver can be called with a particular configuration
and it will return satisfiable if the configuration is valid, and unsatisfiable if
the configuration is not valid. But, before starting with the configuration
model, it is key to know which ones are the core and the dead features in
order to set them and avoid starting with an invalid configuration. Once

that initial configuration has been set, more features can be incrementally

1.1 Objective 3

selected or deselected in an interactive way.

The problem described is not uniquely applicable to the Linux Kernel.
Other highly configurable software systems in areas like automotive, fi-
nancial systems, software testing, and chip testing also experience it (refer

to [Krieter et al., 2021] and section 2.3.1).

1.1 Objective

Within this work, we take abstract algorithms available in previous lit-
erature and produce an equivalent implementation based on the IPASIR
incremental interface, which allows not only a first identification of the
dead and core features but also further addition of rules and whatever
feature assumptions (selected/deselected) in an incremental and efficient
way. We call our implementation IPASIRBONES.

Then, the two following research questions will be answered:

* RQ1: What is the best IPASIRBoNEs and SAT combination implemen-
tation?
* RQ2: How IPASIRBoNEs performs when compared to state-of-the-art

tools?

We believe IPASIRBonNEs will help in creating new solutions for interac-

tive model configuration.

1.2 Concepts and Definitions

This section provides some concepts and definitions, which will be used

in the following chapters.

4 Chapter 1: Introduction

Definition (Boolean variable). A Boolean variable x has two possible

values: True or False.

Definition (Literal). A literal can be either a Boolean variable x (posi-

tive literal) or its negation X (negative literal.

Hence, we will denote the set of Boolean variables by X = {x;, x,,...,x,}

and the set of literals over X as L = {x;,x;|x; € X,1 <i <n}

Note that most implementations of Boolean literals represent them as

x; for the True assignment and —x; for the False assignment of variable x;.
Definition (Clause). A clause is a disjunction (or = V) of literals.

Definition (CNF-Formula). A formula i is in Conjunctive Normal

Form (CNF) when it is expressed as a conjunction (and = A) of clauses.

Definition (Assignment). Given a CNF formula ¢ over a set of vari-
ables X, an assignment is a mapping from each variable x; to {True,

False}.

Definition (Satisfiable Formula). Given a CNF formula ¢ over a set
of variables X, 1 is satisfiable if and only if, for each variable x;, there
exists an assignment that makes formula ¢ True. If every possible variable

assignment makes the formula False, then formula 1 is unsatisfiable

Definition (Backbone). There are several definitions of the backbone
of a satisfiable formula, but the most generally used is the one by [Kilby
et al., 2005]: The backbone of a propositional formula is the set of literals
which are true in every satisfying truth assignment. An alternative definition
by [Janota et al., 2015] defines the backbone as the set of necessary assign-
ments: If a literal | is in the backbone of 1, any assignment satisfying 1 must

set | to true.

1.2 Concepts and Definitions 5

Definition (Core Literal). Given a literal x; from the backbone of the
formula 1, x; is a Core Literal if the assignment satisfying formula # is x;.
Definition (Dead Literal). Given a literal x; from the backbone of the
formula ¢, x; is a Dead Literal if the assignment satisfying formula 1 is X;.
Definition (Feature Model). A feature model [Batory, 2005] is a hier-
archically arranged set of features. Relationships between apparent (or
compound) features and their child features (or subfeatures) are catego-

rized as:

e And — all subfeatures must be selected,

* Alternative — only one subfeature can be selected,
* Or — one or more can be selected,

* Mandatory — features that required, and

* Optional — features that are optional

Feature models, in turn, can be translated into propositional formulas
[Mannion, 2002] and this connection allows us to use satisfiability solvers
or SAT-solvers

CNF-Formulas (Feature Models, Models) are typically stored in a stan-
dard format created by the Center for Discrete Mathematics and Theoret-
ical Computer Science, called DIMACS [SAT Challenge, 1993]. DIMACs

are textual files with the following types of lines:

* Comment lines: These lines start with a lowercase "c" and can con-
tain any informative text, which is expected to be ignored by any
program reading the file.

* Problem line: This line starts with a lowercase "p" character and has

the format:

Chapter 1: Introduction

p FORMAT NUM_VARIABLES NUM_CLAUSES

where FORMAT must be "CNF", a confirmation that following lines
encode a cnf formula, NUM_VARIABLES is the number of variables of
the formula described and NUM_CLAUSES is the number of clauses of
the formula.

* Clause lines: Must be placed after the problem line. The format is

as follows:

Every literal is represented by its variable number, with a neg-

ative sign in case of a negated literal.

— A clause is a sequence of literals, separated by spaces and ended

with a 0.
- A formula is a sequence of clauses.

— There are no restrictions to line splitting. A clause can be split
in multiple lines, provided that it is properly ended with a 0.
On the other side, multiple formulas can be stored, separated

by 0, in a single line.
As an example, given the formula from [Perez-Morago et al., 2015]:

PY=(x1 VX Vx3VxsVx5Vxg)A(XyVx3)A(X3Vx7)A(XgVX3)A

(X5 Vx3) A (X6 V x3) A(X1 VX2) A (X4 VXs5) A (X4 V Xs)

The corresponding DIMACS file is listed in Listing 1.1.

0N U~ WN -

1.3 Document Structure 7

Listing 1.1: Example DIMACS file

This is the CNF corresponding to the example from Perez-Morago 2015 article
f1 is a core feature - included in every derivative

f2 is a dead feature - missing in every derivative

cnf 6 9

234560

W= | =T OOO

I
» wWww
[=NeR]

3 -50
3 -6 0
-1 -20

1.3 Document Structure

The rest of this document is structured as follows: Chapter 2 reviews lit-
erature relevant to this work related to feature models, SAT-solvers, back-
bones and IPASIR, including a brief introduction to its interface. Chap-
ter 3 describes the main contribution of our work: an IPASIR-based im-
plementation of diverse algorithms to compute the backbone of propo-
sitional formulas. Chapter 4, reports an in-depth empirical evaluation of
our IPASIR programs presented in Chapter 3, ending with a comparison to
other state-of-the-art solvers. Finally, Chapter 5 outlines the conclusions

and suggest future work.

Chapter 1: Introduction

Chapter 2: Related Work

This chapter reviews academic literature related to the subject discussed

in the following chapters: Feature Models, SAT-solvers and backbones.

2.1 Feature Models and SAT-solvers

Batory’s seminal paper [Batory, 2005] showed the equivalence between
feature models and propositional logic, which supports the automated
analysis of models using SAT-solvers. This paper has originated fruitful
literature on how to solve variated feature models’ problems employing
SAT-solvers.

SAT solving literature can be traced back to [Davis and Putnam, 1960],
often named as DP procedure, and its extension [Davis et al., 1962], named
DPLL procedure, as the first SAT-solvers. Modern SAT-solvers include ad-
ditional heuristics to the DPLL procedure and some others are based on
conflict-driven clause learning (CDCL) [Marques-Silva et al., 2021].

Eventually, SAT solving became an active research area, with SAT Com-
petitions' organized bi-yearly or yearly since 2002, usually as a satellite

event to the SAT Conference (International Conference on Theory and Ap-

http://www.satcompetition.org/

10 Chapter 2: Related Work

plications of Satisfiability Testing) have produced, over the years new al-
gorithms and better heuristics and implementation techniques.

On more advanced topics, [Alyahya et al., 2022] analyzes existing SAT-
solvers’ literature, looking into underlying structural measures such as
backbones, backdoors and others which might help in defining SAT struc-
ture.

There are other authors that make different proposals on feature mod-
eling. [Krieter et al., 2021] uses implication graphs instead of a SAT-solver

within FeaturelDE, a feature-oriented software development framework.

2.2 IPASIR

IPASIR, is the reverse acronym for “Re-entrant Incremental Satisfiability
Application Program Interface" [Balyo, 2017], was first presented at the
2015 SAT race [Balyo et al., 2016] to unify the interface for the different
incremental SAT-solvers, and since then it has been a competition track
for each following SAT competition.

Some SAT-solvers with IPASIR interface are Picosat [Biere, 2008], Lin-
geling [Biere, 2014], Cadical [Biere et al., 2020], Minisat [Eén and Sorens-
son, 2004] and Glucose [Audemard and Simon, 2017] which is based on
Minisat.

IPASIR aims to provide a universal SAT-solver interface, which can be
easily implemented by every SAT-solver and used to build applications
in every domain without knowing the underlying implementation of each
solver and allowing changing the solver used in the application at compile

time without any change in code.

0 ~NOU A WN

R R e G e e
OCLWNOUAWNREOW

2.2 IPASIR 11

IPASIR interface is composed of the nine functions in Listing 2.1.

Listing 2.1: IPASIR Interface

const char *ipasir_signature();

/'l Returns solver name and version
void sipasir_init();

/] Initiliazes solver instance and returns a pointer to it
void ipasir_release(void *solver);

/| Releases (Destroys) the solver instance

void ipasir_set_terminate(void *solver, void =state,
int(*terminate) (void xstate));

/| Sets a call-back function for aborting solving process when required
void ipasir_add(void xsolver, int lit_or_zero);

// Adds a literal to the current clause or finalize it
void ipasir_assume(void *solver, int lit);

/] Assumes a literal for the next solver call
int ipasir_solve(void *solver);

/| Solves the formula and returns:

/] 10 if SATisfiable, 20 if UNSATisfiable
int ipasir_val(void *solver, int 1lit);

/| Retrieves a variable truth value (SAT case)
int ipasir_failed(void =*solver, int 1lit);
/!l Checks for a failed assumption (UNSAT case)

As IPASIR is central for our work, an example of how to use it is pro-

vided in Listing 2.2. This example uses the CNF formula in Listing 1.1 as
input. Lines 1-3 link the ipasir.h interface to the current program, and
Line 4 prints the solver name (e.g. "minisat220"). Then, Line 6 returns
a pointer to the solver instance newly created. Lines 9-11 show how to
add the literals of the clause in Line 12 from 1.1 to the formula in the
solver: each literal is added with a call to ipasir_add and, when all liter-
als from the clause are added, the clause is added to the formula by calling
ipasir_add with a 0 value. Lines 13-15 repeat the same process for the
clause in Line 13. This process is intended to be done with a loop or a
function reading those values from the DIMACS file.

Suppose that our program has properly added all literals and clauses
from 1.1, the call to ipasir_solve in Line 18 will return 102 in the res

variable since the formula is satisfiable. Line 22 makes the temporary

Zipasir_solve returns 10 or 20, meaning SAT or UNSAT, respectively.

0 ~N O U A WN =

NN N NN B B e e s s e s
A WNFOWOVWNO®MUNWNEREOO

25
26
27
28

12 Chapter 2: Related Work

assumption that variable x; takes the -1 value (i.e., false). In this case,
the new call to ipasir_solve in Line 23 will now return 20 in the res
variable as the formula is unsatisfiable under the assumption that vari-
able x; takes the literal -1. If the solver returns the UNSAT state, then
it can be queried to confirm which assumption variable caused this state.
A call to ipasir_failed, asking about variable x;, will return 1, mean-
ing that the previous assumption caused SAT-solver to move into UNSAT.
Note that ipasir_failed can be only called when the solver is in UNSAT
state, and only the variables used in previous calls to ipasir_assume can
be queried. If the assumed literal does not make the formula unsatisfiable,

ipasir_failed returns 0.

Listing 2.2: IPASIR Interface example

extern "C" {
#include "ipasir.h"

}

printf("c Solver: %s\n", ipasir_signature());
void *solver = ipasir_init();

/] Omitted adding clauses in Lines 5 to 11

ipasir_add(solver, -4);
ipasir_add(solver, -5);
ipasir_add(solver, 0);

ipasir_add(solver, -4);
ipasir_add(solver, -6);
ipasir_add(solver, 0);

/]l This call to solve will return 10 (SAT)
res=ipasir_solve(solver);

/] Assuming variable x1 takes literal value -1
/]l Now solve call will return 20 (UNSAT)

ipasir_assume(solver, -1);
res= ipasir_solve(solver);
failed = ipasir_failed(solver, 1);

/] This new assumption is SAT
ipasir_assume(solver, -2);
res= ipasir_solve(solver);

After any satisfiable call to ipasir_solver, the solver internally stores

a solution that satisfies the assumptions and formula in the state at the

2.3 Backbones 13

time of the call. This solution can be queried by calling to ipasir_val(
solver, 1lit), with the number of the desired variable and function will
return 1it if the satisfying literal is True and -1it if the satisfying literal
is False. The IPASIR documentation states that the function may return
0 if the found assignment is satisfying for both valuations of 1it. Note
that 1it argument name in the function call can be misleading as it is a
positive integer between 1 and the number of variables,

Assumptions are temporal and automatically cleared after any call to
ipasir_solve. In fact, after making the assumption that variable x, takes
the literal -2 (Line 27), the call to ipasir_solve in Line 28 will return
10 (Satisfiable), without being interfered with by the assumption made
before the previous solver call (Lines 22 and 23).

New clauses can be added at any time, in the same way as done above
(Lines 9 -11 and 13-15) and, unlike assumption variables, they are perma-

nent during the solver instance lifetime.

2.3 Backbones

While there are several definitions of the backbone of a satisfiable SAT
problem, the most generally used is the one by [Kilby et al., 2005] (refer
to Section 1.2).

But the backbone term was first defined and some of its properties
were enumerated at [Monasson et al., 1999] while experimenting on ran-
dom k-CNF instances. In a recent survey, [Alyahya et al., 2022] provides
an overview of structural measures related to the Satisfiability Problem,

like the backbone size, strong backdoor size, weak backdoor size, fre-

14 Chapter 2: Related Work

quency of variables in a weak backdoor, LS backdoor size, LSR backdoor
size, and backbone/backdoor variable overlap, by using models ranging
from random, crafted, and industrial benchmarks, but the evidence was

inconclusive in relation to the backbone.

There have been many attempts to use innovative solutions for obtain-
ing the backbone of a formula. For example, [Guo et al., 2019] uses a
heuristic backbone algorithm which provides significant time improve-

ment when compared to the one test per time algorithm.

A different approach is followed by [Perez-Morago et al., 2015], by us-
ing a Binary Decision Diagram (BDD) instead of using a SAT-solver to
identify features of the product platform which must part of every deriva-

tive and those to be excluded of it.

On the other side, other authors used machine learning techniques. For
example, [Wu, 2017] used a logistic regression model in conjunction with
a Monte-Carlo approach achieving an accuracy of 78 percent in identify-
ing backbones. Similarly, [Liang et al., 2020] applies ID3 machine learning
algorithm [Quinlan, 1986], reaching an accuracy of 75 percent or more,
while still resorting to a SAT-solver to complete the backbone. Fully solv-
ing the backbone variable based on ID3_algorithm is still an open prob-

lem.

[Previti et al., 2017] provides two generic algorithms to compute gener-
alized backbones, that is, formulas defined over-generalized domains, not
limited to Boolean values. Another proposal, with practical application
in bounded model checking, analysis of hardware circuits, static analysis,

and test generation is made by [Previti and Jarvisalo, 2018].

2.3 Backbones 15

The most extensive and deepest work was done at [Janota et al., 2015],
as an extension of their previous work at [Marques-Silva et al., 2010] and
[Janota et al., 2012]. This work describes seven algorithms to calculate
backbones and different performance results, which were implemented in
the minibones tool and made available publicly.

EDUCIBone, presented at [Zhang et al., 2018], implements three strate-
gies, COV, WHIT, and 2LEN to improve backbone computing. Authors
claim that EDUCIBone requires 18% less runtime than minibones-cb10.

EDUCIBone and minibones, will be used later, during the Experimental
Evaluation (Chapter 4) to complete an extended performance evaluation

by comparing them with our best-performing programs based on IPASIR.

2.3.1 Applications of backbones

Some examples of backbone applications are the localization of faults in
silicon integrated circuits [Zhu et al., 2011], knowledge representation
and reasoning (KRR) [Previti and Jarvisalo, 2018], vessel stowage [Kroer,

2012] and [Janota, 2010] for interactive model configuration.

16

Chapter 2: Related Work

Chapter 3: Computing Backbones

This chapter describes the main contribution of our work: an IPASIR-
based implementation of diverse algorithms to compute the backbone of
propositional formulas (which may encode configuration or any other kind
of model). In Section 3.1, the seven algorithms described in [Janota et al.,
2015] are implemented with the IPASIR interface. These algorithms are
state-of-the-art in backbone computing. Section 3.2 proposes additional
heuristics to improve the backbone computation. Finally, Section 3.3 pro-
vides details about additional improvements. After describing each al-
gorithm’s pseudocode and our corresponding IPASIR implementation, an
execution sample will be provided using the buildroot.cnf configuration
model, taken from [Fernandez-Amoros et al., 2023]. The next Chapter 4

will report an in-depth performance analysis of all the algorithms.

3.1 Backbone computation using IPASIR

As described in Section 2.2, IPASIR is a C/C++ interface to create a uni-
form interface allowing developers to access compatible SAT-solvers with-

out requiring knowledge of their internal structure.

This section describes fully-functioning IPASIR implementations of seven

18 Chapter 3: Computing Backbones

backbone algorithms abstractly described in [Janota et al., 2015]. In con-
trast with dedicated backbone calculation tools, our implementation will
help integrate backbone calculation into other tools, such as interactive
configurators.

The “template” we used to write our code is genipabones.cpp, an im-
plementation available at [Balyo, 2017] of the algorithm in Section 3.1.2.
Our programs produce an output similar to other tools like minibones [Jan-
ota et al., 2015] and EDUCIBone [Zhang et al., 2020], but redirected to the
stderr stream to facilitate its ulterior processing. After the description
of each algorithm throughout this section, an execution sample will be

provided.

3.1.1 Algorithm 1: Enumeration-based

This algorithm enumerates all the implicants, one by one, and updates the

backbone in every iteration (Figure 3.1).

Algorithm 1: Enumeration-based backbone computation

Input : Satisfiable formula ¢
Output: Backbone of ¢, vg

1 vp < {z |z evar(¢)} U{Z | z € var(¢)} // Initial backbone upper bound

2 while vy # () do

3 (outc, v) < SAT(¢) // SAT solver call

4 if outc = false then

5 L return vy // Terminate if no more implicants

6 VR < VRNV // Update backbone estimate
// Block implicant

7 wp — \/levl

8 (;5 — (;5 Jwp

9 assert(vgp = (/)) // Backbone estimate became empty before enumeration finished

10 return vp

Figure 3.1: Algorithm 1 - Enumeration-based backbone computation

3.1 Backbone computation using IPASIR 19

As a first step, it establishes the set of all literals as the initial backbone
upper bound (Line 1). Then a search is performed until that upper bound
is not empty, either because that literal was identified as a backbone mem-
ber or because that literal is not appearing in every SAT solution calculated
(the latter is the definition of the backbone). In every loop, a SAT-solver
call is performed, causing the loop to finish if that call is not satisfiable. If
the SAT call is satisfiable, the upper bound set is filtered to contain only
those literals which are also appearing in the new SAT solution returned.
As a performance aid and in order to prevent the algorithm to calculate an
implicant already found, it uses the blocking clause heuristics, by adding
it to the formula. A blocking clause for an implicate v is defined as the
clause /., I.

In our IPASIR implementation (Listing 3.1), the initial backbone up-
per bound is set as two arrays (Lines 1 and 2), one for positive and one
for negative literals. After every SAT call (Line 11), resulting SAT solution
literals are saved (Lines 19 to 21), used first negated to filter backbone up-
per bound (Lines 23 to 35) and then used to compute the block implicant
(Lines 37 to 43) to be added as a new clause to the formula. Literals from
the SAT solution must be saved to a temporary variable, since IPASIR (and
most SAT-solvers) cannot mix calls to ipasir_val (which will move SAT-
solver from either INPUT, SAT, or UNSAT to INPUT state) and calls to
ipasir_add (which require SAT-solver to be in SAT state)

The screenshot in Figure 3.2 shows the execution results of Algorithm

1 using buildroot.cnf model.

20 Chapter 3: Computing Backbones

Listing 3.1: IPASIRBoONEs-1

1| int* pos_literals = new int[maxVar]; // upper bound - positive literals
2| int* neg_literals = new int[maxVar]; // upper bound - negative literals
3 for (int i=0; i<maxVar; i++) {

4 pos_literals|[i] = i+1;

5 neg_literals[i] = -(i+1);

6}

7| int vr_upper_count = 2 x maxVar;

gl int* sat_sol = new int[maxVar];

9

10l while (vr_upper_count != 0) {

11 res = ipasir_solve(solver);

12 satCalls++;

13 if (vr_upper_count != vr_cpy) {

14 vr_cpy = vr_upper_count;

15 }

16 if (res==UNSAT) {

17 break; /| return VR upper_bound;
18 }

19 for (int lit=1; lit<=maxVar; lit++) {

20 sat_sol[lit-1] = ipasir_val(solver, lit);
21 }

22 /]l VR <- VR ~ v

23 for (int lit=1; lit<=maxVar; lit++) {

24 if (sat_sol[lit-1]1>0) {

25 if (neg_literals[lit-1] != 0) {

26 neg_literals[lit-1] = 0;

27 vr_upper_count--;

28

29 } else if (sat_sol[lit-1]<0) {

30 if (pos_literals[lit-1] != 0) {

31 pos_literals[lit-1] = 0;

32 vr_upper_count--;

}

34 }

35 }

36 [/ now computing block implicant

37 for (int i=0; i<maxVar; i++) {

38 if (neg_literals[i] !=0)

39 ipasir_add(solver, -neg_literals[i]);
40 if (pos_literals[i] !=0)

41 ipasir_add(solver, -pos_literals[i]);
42 }

43 ipasir_add(solver, 0);

® 53961 53962 53963 53964 53965 53966 53967 53968 53969 53976 53971 53972 53973 53979 53
983 53984 53992 53996 53997 53998 53999 54666 54001 546802 5Ue03 5UeG6 5UEB8 5U813 5U815
5uPle 54818 54819 54821 54623 54024 54025 50826 54827 5U828 54629 54630 54631 5uU0 5S5ue3
3 54834 5435 5uU@36 5UB37 54854 5uU858 5uUB66 54865 54866 SUB68 S5UBE9 SUBT1 5UBT2 SU8TU 54
075 5u4e77 5uUe78 5uUeBe

c App-Solver: bin/ipasirbonesl-minisat22e
Model name: bin/blend/buildroot.cnf
Solver : minisat22e
SAT solver calls : 7815
Formula Variables: 5U080
Backbone size : 16834

real 1m9.564s
user 1m9.u32s
Ome .130s

Figure 3.2: Running Algorithm 1 on buildroot.cnf

3.1 Backbone computation using IPASIR 21

3.1.2 Algorithm 2: Iterative testing - Two tests per

variable

This algorithm performs an iterative loop for all variables in the model,
checking in sequence both, the negative literal and the positive literal.
In every SAT call (Figure 3.3), an assumption, negating the literal under
evaluation is added to the current SAT stage. Once that SAT call is com-
pleted, those assumptions previously made are automatically cleared by
the SAT-solver. This algorithm performs a total of 2n sequential calls to
the SAT-solver, one for each literal of each variable. An additional perfor-
mance improvement heuristic consists in adding those backbones, after

they are found, as single literal clauses to the formula.

Algorithm 2: Iterative algorithm (two tests per variable)

Input : Satisfiable formula ¢
Output: Backbone of ¢, vg

1 VR < @ // Initial backbone lower bound
2 foreach x € var(¢) do

3 (outcy, v) — SAT(¢p U {z})

4 (outeq, V) < SAT(¢ U {Z})

5 assert (outc; = true or outcy = true) // ¢ must be satisfiable
6 if outc; = false then

7 vg + vr U{Z} // % is backbone
8 L ¢ —oU{z}

9 if outcy = false then

10 vr + v U{z} // x is backbone
L ¢+ oU{x}

12 return vy

Figure 3.3: Algorithm 2 - Iterative algorithm - Two tests per variable

genipabones.cpp is a preliminary IPASIR implementation of this al-
gorithm, which is available at [Balyo, 2017]. Our refactored version of

genipabones.cpp is showed in Listing 3.2.

22 Chapter 3: Computing Backbones

Listing 3.2: IPASIRBONES-2

1l int* backbones = new int[maxVar];

2| for (int i=0; i<maxVar; i++) backbones[i] = 0;
4 for (int lit=1; lit<=maxVar; lit++) {
5

6 ipasir_assume(solver, lit);

7 int resl = ipasir_solve(solver);
8 satCalls++;

9 if (res1 == UNSAT) {

10 bbonesFound++;

11 backbones|[1lit-1] = -1it;

12 ipasir_add(solver, -1it);

13 ipasir_add(solver, 0);

14 }

15

16 ipasir_assume(solver, -1lit);

17 int res2 = ipasir_solve(solver);
18 satCalls++;

19 if (res2 == UNSAT) {

20 bbonesFound++;

21 backbones|[1lit-1] = 1it;

22 ipasir_add(solver, 1lit);

23 ipasir_add(solver, 0);

24 }

25

26 if (res1==UNSAT && res2==UNSAT) {
27 printf("UNSAT formula (literal: %d), exiting...\n", lit);
28 exit(-1);

The screenshot in Figure 3.4 shows the result of running Algorithm 2
on buildroot.cnf. A noticeable observation with respect to Algorithm 1’s
execution, shown in Figure 3.2, is the higher number of SAT calls, leading
to a longer execution time.

53940 53941 53942 53943 53944 53945 53946 53947 53948 53949 53958 53954 53956 53957 5396
8 53961 53962 53963 53964 53965 53966 53967 53968 53969 53976 53971 53972 53973 53979 53
983 53984 53992 53996 53997 53998 53999 54866 54801 54802 5UBA3 5ULG6 5UAO8 5413 54015
54016 54018 54019 54021 54623 5424 54025 54826 54027 5428 5UA29 546360 54031 54032 5463
3 54034 54835 54636 54037 5U054 5UA58 5U868 54865 5UB66 5UB68 5UB69 5UBAT1 54672 5UeTU 54
@75 54877 54878 5UA86
c App-Solver: bin/ipasirbones2-minisat22e

Model name: bin/blend/buildroot.cnf

Solver: minisat22e

SAT solver calls : 188168

Formula Variables: 54080

Backbone size 5 16834

real Tm9.249s
user 7m9.231s
sys eme.8les

Figure 3.4: Running Algorithm 2 on buildroot.cnf

3.1 Backbone computation using IPASIR 23

3.1.3 Algorithm 3: Iterative testing - One test per variable

The definition of backbone itself provides a clue on how to improve the
backbone computation performance by reducing the number of SAT calls:
backbone variables must be present in every satisfiable solution always
with the same literal. The third algorithm in Figure 3.5 takes advantage
of this fact, by first computing a satisfiable solution and then perform-
ing an iterative test for each of those particular solution literals. In each
step of the loop, the SAT-solver is called with the complementary of the
literal (Line 6). If that instance is not satisfiable, then the literal is added
to the backbone estimate (Line 8), removed from the candidate list (Line
9), and added as one unit clause to the formula (Line 10). If the SAT call
is satisfiable, for each variable the literal from the current backbone esti-
mate is checked with the solution literal. If the literals from both sides are

different, then the literal is removed from the backbone estimate.

Algorithm 3: Iterative algorithm (one test per variable)

Input : Satisfiable formula ¢
Output: Backbone of ¢, vg

1 (outc, V) < SAT(¢)
2 A+v // SAT tests planned
3 vp 0 // Initial backbone lower bound
4 while A # () do
5 [< pick a literal from A // Pick a literal to test
6 (outc, l/) — SAT(¢ @] { i}) // Test if | is a backbone
7 if outc = false then

// Backbone identified
8 v+ vrU{l} // Add | to the backbone estimate
9 A=A~{l} // 1 does not need to be tested anymore
10 o+ oU{l}
11 else
12 L A—~ANv // Literal filtering

13 return vy

Figure 3.5: Algorithm 3 - One test per variable

0N U A WN P

WRNNNNNNNNNDNRE B B 2 e e e
O WWNOUKNWNROWOWOMNOUNWNERLOUO

24 Chapter 3: Computing Backbones

That way, the resulting IPASIR-based code is listed at 3.3. Note that
the code has been accommodated to store the backbone in a dedicated
array (Line 1), while also performing a SAT call to identify an initial upper
bound (Line 4) as done with previous algorithms. This algorithm performs
a maximum of n+1 SAT calls, that is, the initial one (Line 4) to set up the
upper bound plus one more for each literal of the upper bound (Line 15).
This algorithm also implements literal filtering (Lines 23 to 28), comparing
all literals from the upper backbone estimate pending to check with the

current SAT solution and discarding those which are different.

Listing 3.3: IPASIRBoNES-3

int* backbones = new int[maxVar];
for (int i=0; i<maxVar; i++) backbones[i] = 0;

ipasir_solve(solver);

satCalls++;

int* sat_solution = new int[maxVar];

for (int 1lit = 1; 1lit <= maxVar; lit++) {
sat_solution[lit-1] = ipasir_val(solver, 1lit);

}

for (int i = 0; i < maxVar; i++) {
int candidate = sat_solution[i];
if (candidate == 0) continue;
ipasir_assume(solver, -candidate);
int res = ipasir_solve(solver);
satCalls++;
if (res == UNSAT) {
bbonesFound++;
backbones[i] = candidate;
ipasir_add(solver, candidate);
ipasir_add(solver, 0);
} else {
for (int lit = i+1; 1lit < maxVar; lit++) {
if ((sat_solution[lit] != 0)
&& (sat_solution[lit] != ipasir_val(solver, lit+1))) {
sat_solution[lit] = 0;

Figure 3.6 shows the execution of Algorithm 3 on buildroot.cnf. It
reveals a dramatic reduction in the number of SAT calls when compared
to Algorithm 2 (Figure 3.4), with 180.160 SAT calls for Algorithm 2 versus
22,158 SAT calls for Algorithm 3. This is a result of the combined effect of

3.1 Backbone computation using IPASIR 25

reducing the initial upper bound backbone estimate to half plus the literal
filtering. This lower number of SAT calls also leads to shorter execution

times.

53948 53941 53942 53943 53944 53945 53946 53947 53948 53949 53958 53954 53956 53957 5396
8 53961 53962 53963 53964 53965 53966 53967 53968 53969 539768 53971 53972 53973 53979 53
983 53984 53992 53996 53997 53998 53999 540660 54001 54002 5463 5UAA6 5UAB8 54813 5U815
5U16 54018 5uU619 54821 54823 54824 54825 5Ue26 54027 5UE28 5UE29 5UA36 5uUA31 5uU32 5UB3
3 54034 54835 54036 54037 54054 54858 54860 54065 54866 54068 54069 54071 54072 54874 54
875 5Ue77 54878 5U880
c App-Solver: bin/ipasirbones3-minisat22e

Model name: bin/blend/buildroot.cnf

Solver: minisat22e

SAT solver calls : 22158

Formula Variables: 54880

Backbone size : 16834

real 8ml5.7uU3s
user 8ml5.732s
sys ome.010s

Figure 3.6: Running Algorithm 3 on buildroot.cnf

3.1.4 Algorithm 4: Iterative algorithm with the comple-

ment of backbone estimate

This algorithm, shown in Figure 3.7, also starts populating the initial back-
bone estimate from the solution of a first SAT call (Lines 1-2), being it
the upper bound of the backbone. Then it loops until there are no more
elements in the initial backbone estimate to test. In every loop, the SAT-
solver is called adding the complement of the backbone at the time as an
additional clause (Line 4). If the SAT call is not satisfiable, the current
backbone estimated is returned as the backbone (Line 6). Otherwise, lit-
eral filtering is applied to the backbone estimate.

Listing 3.4 shows our IPASIR implementation of Algorithm 4. First,
the initial backbone estimate is computed (Lines 2 to 9), followed by the

iterative loop. In order to temporarily add the backbone estimate to the

26 Chapter 3: Computing Backbones

Algorithm 4: Iterative algorithm with complement of backbone estimate

Input : Satisfiable formula ¢
Output: Backbone of ¢, vg

1 (outc,v) + SAT(9)
2 VR <V // Initial backbone estimate
3 while vp # 0 do

4 (oute,v) <= SAT(¢ U { Ve,)

5 if outc = false then

6 L return vy // Terminate if unsatisfiable
7 VR < VRNV // Refine backbone estimate
8 return vp

Figure 3.7: Algorithm 4 - Complement of backbone estimate

formula (Lines 15 to 20), an additional variable is added to that clause
(Line 19) so that variable is first assumed with the complementary literal
(Line 21) before calling SAT and then it is set with the actual literal, there-
fore making that temporary clause always true and not affecting any later
SAT-solver calculation. As with every one of these backbone complement’s
SAT calls a new dummy variable must be used, a rol1_back variable (Line
11) allocates new formula variables past the actual formula variables. Af-
ter the SAT call, literal lifting and variable lifting are applied.

Figure 3.8 shows the execution of Algorithm 4 on buildroot.cnf. A
key observation is the reduced number of SAT calls (only 8,139) compared
to Algorithm 3 (22,158 calls). But this fact does not help in reducing the
processing time, which is approximately five times higher. This is because
of the higher complexity of adding large temporary clauses and rolling

them back.

uoh W N e

~

18

NN N e
= O L

w N

3.1 Backbone computation using IPASIR 27

Listing 3.4: IPASIRBoNESs-4

/] initial backbone estimate

int res = ipasir_solve(solver);

if (res == UNSAT)
exit(-1);

satCalls++;

int* sat_solution = new int[maxVar];

for (int lit = 1; 1it <= maxVar; lit++) {
sat_solution[lit-1] = ipasir_val(solver, 1lit);

}

int roll_back = 1;
/| looping with the complement of backbone estimate
while (true) {
/! adding backbone complement clause
for (int i = 0; i < maxVar; i++) {
if (sat_solution[i] != 0)
ipasir_add(solver, -sat_solution[i]);
}
ipasir_add(solver, maxVar + roll_back);
ipasir_add(solver, 0);
ipasir_assume(solver, -(maxVar + roll_back));
res=ipasir_solve(solver);

if (res == UNSAT) {

break; // terminate loop if UNSAT
}
/| refine backbone estimate
for (int 1lit = 1; 1lit <= maxVar; lit++) {
if (sat_solution[lit-1] != 0) {
if (sat_solution[lit-1] != ipasir_val(solver, 1lit)) {
sat_solution[lit-1] = 0;
}
}
}

ipasir_add(solver, maxVar + roll_back);
ipasir_add(solver, 0);
roll_back++;

53948 53941 53942 53943 53944 53945 53946 53947 53948 53949 53958 53954 53956 53
0 53961 53962 53963 53964 53965 53966 53967 53968 53969 53976 53971 53972 53973
983 53984 53992 53996 53997 53998 53999 540660 5uUeA1 5402 5UA3 5UAO6 5UAA8 5uU13 5U15
5416 54018 54819 5u4021 5uU823 5uUe2U 5UP25 5UA26 5UA2T 5UA28 5uU29 5uUE36 5UP31 5uUe32 5UA3
3 54034 54835 54036 54837 54854 5uU858 5U060 5UB65 54066 5UB68 54869 5U0T1 54872 5UeTU 54
875 504077 5U878 5U080
c App-Solver: bin/ipasirbonest-minisat220

Model name: bin/blend/buildroot.cnf

Solver: minisat22e

SAT solver calls : 8139

Formula Variables: 5U080

Backbone size : 16834

real 1ml6.573s
user 1ml6.563s
Omo .018s

Figure 3.8: Running Algorithm 4 on buildroot.cnf

28 Chapter 3: Computing Backbones

3.1.5 Algorithm 5: Chunking

While the previous algorithm picked up one single literal, negated it, and
called the SAT-solver to check satisfiability or perform literal filtering, the
chunking algorithm in Figure 3.9 picks several literals (Lines 5-6), a chunk,
negates them and calls the SAT-solver (Line 7). With the response, it per-
forms literal filtering if SAT-solver returns satisfiable (Line 13). In the less
probable event that SAT call returns unsatisfiable, then all literals in the
chunk used for the call are part of the backbone (Lines 8 to 11). Note the
SAT call requires temporarily adding a clause with the negation of each

literal in the chunk.

Algorithm 5: Chunking algorithm

Input : Satisfiable formula ¢, with variables X; K € Nt chunk size
Output: Backbone of ¢, vg

1 (outc,v) < SAT(9)
2 v+ 0 // Initial backbone lower bound
3 ANe—v // Initial literals to test
4 while A # () do
5 k + min(K,|A|)
6 I" + pick k literals from A
7 (oute, v) + SAT(AU{Ver 1 })
8 if outc = false then

// All literals in chunk are backbones
9 vp < vrUT // Add T' to lower bound.
10 A+~ ANT // Literals in ' do not need to be tested anymore.
11 p—oU{{l}|leT}
12 else

13 LA(—AI’TV

14 return vy

Figure 3.9: Algorithm 5 - Chunking Algorithm

Listing 3.5 shows our IPASIR implementation of Algorithm 5, which
follows a similar approach to Algorithm 4 to solve the issue by calling the
SAT-solver with a temporary clause consisting of the or of the negation of

each literal in the chunk.

O 00N O U W

NRNNNNRNNRNDNR 2 2 2 e e e e
0N EWNRE,OO®NOUNWNERE O

29
30
31

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

3.1 Backbone computation using IPASIR 29

Listing 3.5: IPASIRBoNES-5

int chunk_size 100;
if (argc > 2)

chunk_size

o~

atoi(argv([2]);

} else {

printf("Using default chuck size: %d", chunk_size);

printf(" => Add as command Line argument any other value.\n");
}

int roll_back = maxVar + 1;

int pos = 0;

for (int i = 0; vars_tested < maxVar;) {
/| printf("Vars tested: %d. Rollback: %d \n", vars_tested, roll_back+1);
roll_back++;
for (int k = 0; (k < chunk_size) && (pos < maxVar); pos++) {

if (sat_solution[pos] != 0) {
ipasir_add(solver, -sat_solution[pos]);
k++;

}

}

ipasir_add(solver, roll_back);
ipasir_add(solver, 0);

/] roll _back clause:

ipasir_assume(solver, -roll_back);
int res = ipasir_solve(solver);
satCalls++;
if (res == UNSAT) { // all literals in the chunk are backbones
pos = 1i;
/] printf("UNSAT: i=%d, pos=%d, Found= %d => ", i, pos, bbonesFound);
for (int k = 0; (k < chunk_size) && (pos < maxVar); pos++) {
if (sat_solution[pos] != 0) {
bbonesFound++;
/] printf("BB= %d, ", sat_solution[pos]);
backbones[pos] = sat_solution[pos];

ipasir_add(solver, sat_solution[pos]) ;

ipasir_add(solver, 0);
sat_solution[pos] = 0;
vars_tested++;

k++;

}

/| printf ("UNSAT: i=%d, pos=%d, Found=%d, Tested=%d\n",

/1 i, pos, bbonesFound, vars_tested);
} else { [/ SAT

/] check below 1lit = i

[/ printf("SAT: i=%d, pos=%d\n", i, pos);
for (int 1lit = i; 1lit < maxVar; lit++) {
if (sat_solution[lit] != 0) {
/| below includes val return 0 valid for 1lit and -1lit
if (sat_solution[lit] != ipasir_val(solver, lit+1)) {
sat_solution[lit] = 0;

vars_tested++;

}
}

/! rolling back:
ipasir_add(solver, roll_back);
ipasir_add(solver, 0);

i = pos ;

if (i >= maxVar) {

i = 0;
pos =

0;

30 Chapter 3: Computing Backbones

This is solved by adding a roll-back variable (Line 9). Negated literals
in the chunk are added as a clause into the formula (Lines 15 to 20). Then,
the roll-back variable is added (Line 21) before storing the clause into the
SAT-solver (Line 22). Before performing the call, that variable is negated
as done with others in the chunk (Line 24), but using an assume. After the
SAT call, at the end of the loop, the roll-back variable is added to the solver
(Lines 61-62) to cancel the temporarily added clause effectively.

The screenshot in Figure 3.10 shows the execution results of Algorithm
5, the chunking algorithm, using buildroot.cnf model. So far, this algo-
rithm needed the lowest number of SAT calls, but the time to complete

still is bigger than Algorithm 3.

8 53961 53962 53963 53964 53965 53966 53967 53968 53969 539760 53971 53972 53973 53979 53
983 53984 53992 53996 53997 53998 53999 54066 5U801 54802 54PA3 54866 5UAO8 54013 54015
54016 54018 5uU819 54821 5U4823 5424 54025 50026 5UB27 54828 54029 54038 5uU831 54832 5463
3 546034 5u4p35 54836 54637 54854 54058 54066 5UBG5 54866 54868 5469 54871 54672 54874 54
875 54077 54078 5U886
c App-Solver: bin/ipasirbones5-minisat220

Model name: bin/blend/buildroot.cnf

Solver: minisat22e

SAT solver calls : 6417
Formula Variables: 5408860
Backbone size : 16834

real 8m27.191s
user 8m27.168s
sys eme.e30s

Figure 3.10: Running Algorithm 5 on buildroot.cnf

3.1.6 Algorthm 6: Core-based Algorithm

Algorithm 6 in Figure 3.11 uses the idea of flipping all and each literal
pending to test and adding it to the solver as a single literal clause before
every SAT-solver call. This is a similar approach to Algorithm 3, iterative -

one test per variable (Figure 3.5), which takes one literal each time. Core-

3.1 Backbone computation using IPASIR 31

based, instead, takes all literals pending to check (Lines 5-7). If the result
is satisfiable, literal filtering is applied (Lines 8-10). Otherwise, the literal
from the core is added to the backbone lower bound, removed from the
pending list, and added as a unit clause to the formula (Lines 13-17). The
algorithm includes a provision in case SAT-solver is not able to properly

identify the core (Lines 18-20).

Algorithm 6: Core-based Algorithm
Input : Satisfiable formula ¢
Output: Backbone of ¢, vg

1 (outc, v, C) < SAT(¢)
2 vp 0 // Initial backbone lower bound
3 A+v // Initial literals to test
4 while A # () do
s | wy e {T]1cA)
6 while true do
7 (outc,v,C) « SAT(pU{{l} |l € wn})
8 if outc = true then
9 A~ ANv
10 break // Move onto a different set of literals to flip
11 else
12 assert(C' Nwy # 0) // ¢ must be satisfiable
13 if CNwy={l} then
// The core contains a single literal from wn
14 vr < vpU{l}
15 A+ AN{l}
16 ¢+ dU{l}
17 WN {p | pEWNAN {p} ¢ C} // Remove from wy literals that appear in the core
18 if wy =0 then
19 test literals in A by another algorithm
20 return vp

21 return vy

Figure 3.11: Algorithm 6 - Core based

To make no modification to the formula/model, then that variable has
to be added as a single-clause literal to the formula to make sure that
added clause is always true and does not make any change in the formula.

This method has two main issues:

* It requires more SAT calls, more complicated because of the number

32 Chapter 3: Computing Backbones

of clauses

* It makes SAT computations harder, as those added fake clauses might

require more effort from SAT-solver.

However, this approach does not achieve good performance, as we will
see in Chapter 4. Additionally, all SAT-solvers tested with IPASIR returned
only one conflicting literal from the core, which limits the possibilities for
performance improvement. Listing 3.6 shows our IPASIR implementa-
tion.

Note two IPASIR function calls to ipasir_failed and ipasir_add
near in the code. According to IPASIR, ipasir_failed can only be called
when SAT-solver is in UNSAT state, which is the case in the code (Line 34),
but a call to ipasir_add, would change that state. This is why the loop is
broken at Line 53 after the first failed literal has been found (Line 47).
ipasir_failed return value in other SAT stages is not specified otherwise.

The screenshot in Figure 3.12 shows the execution results of Algo-
rithm 6 on buildroot.cnf. It involves a higher number of SAT calls
(22,158) when compared to other algorithms, even worse than Algorithm

3.2, which took 1 minute and 9.56 seconds for 7,815 SAT calls.

3.1 Backbone computation using IPASIR 33

Listing 3.6: IPASIRBONES-6

1| int* backbones = new int[maxVar];

2| for (int b=0; b<maxVar; b++) {

3 backbones[b] = 0;

40}

5

6| int res = ipasir_solve(solver);

7| satCalls++;

gl int* sat_solution = new int[maxVar];

9| for (int 1lit = 1; 1it <= maxVar; lit++) {

10 sat_solution[lit-1] = ipasir_val(solver, lit);

11 }

12

13

wal [P

15

16| for (int i = 0; i < maxVar; i++) {

17 if (sat_solution[i] == 0) continue;

18

19 for (int j=i; j < maxVar; j++) {

20 if (sat_solution[i] != 0)

21 ipasir_assume(solver, -sat_solution[i]);

22 }

23

24 int res = ipasir_solve(solver);

25 satCalls++;

26 if (res == SAT) {

27 for (int lit = i+1; lit < maxVar; lit++) {

28 if (sat_solution[lit] != 0) {

29 if (sat_solution[lit] != ipasir_val(solver, 1lit+1)) {

30 sat_solution[lit] = 0;

31 }

32 }

33

34 } else {

35 /| checking for core. IPASIR returns 1

36 for (int 1lit = i; 1lit < maxVar; lit++) {

37 if (sat_solution[lit] != 0) {

38 if (ipasir_failed(solver, lit+1)==1) {

39 printf("%d => %d => %d\n", i, 1lit, ipasir_failed(solver, lit

+1));

40 }

41 }

42 }

43 for (int lit = i; lit < maxVar; lit++) {

44 if (sat_solution[lit] != 0) {

45 |/ printf("Pos= %6d, Lit=%6d, Failed=%2d, Value=%6d\n",

46 /1 i, lit, ipasir_failed(solver, lit+1),
sat_solution[lit]);

47 if (ipasir_failed(solver, lit+1)==1) {

48 bbonesFound++;

49 backbones[1lit] = sat_solution[lit];

50 ipasir_add(solver, sat_solution[lit]);

51 ipasir_add(solver, 0);

52 sat_solution[lit] = 0;

53 break;

34 Chapter 3: Computing Backbones

8 53961 53962 53963 53964 53965 53966 53967 53968 53969 53976 53971 53972 53973 53979 53
983 53984 53992 53996 53997 53998 53999 54000 54661 540602 5UBA3 5UAG6 5UAB8 54813 54015
54016 54018 54019 5uU821 54823 54824 54025 50026 54027 5U828 54829 5U36 5UA31 54032 5463
3 546034 54p35 54036 54037 5uUeS5U 54058 54066 5UBG5 54066 5UO68 5UMG9 54071 54072 5UeTU 54
875 54077 54078 54888
c App-Solver: bin/ipasirbones6-minisat220

Model name: bin/blend/buildroot.cnf

Solver: minisat228

SAT solver calls : 22158
Formula Variables: 5uU080
Backbone size : 16834

real eml7.989s
user 8m17.898s
sys Ome.0168s

Figure 3.12: Running Algorithm 6 on buildroot.cnf

3.1.7 Algorthm 7: Core-based Algorithm with Chunking

Algorithm 7 in Figure 3.13 is basically a mix of Algorithm 5 and Algorithm

6, so instead of flipping all pending literals at once, it only flips a fixed

Algorithm 7: Core-based Algorithm with Chunking

Input : Satisfiable formula ¢; K € N chunk size
Output: Backbone of ¢, vg

1 (outc, v, C) < SAT(y)
2 vp — 0 // Initial backbone lower bound
3 ANe—v // Initial literals to test
4 while A # () do
5 k < min(K, |A])
6 T" « pick k literals from A
v | wy e {T]1er)
8 while true do
9 (oute,v,C) + SAT(pU{{l} |l € wn})
10 if outc = true then
11 A~ ANv
12 break // Done with the chunk
13 else
14 if CNwy ={l}then
// The core contains a single literal from wy .
15 VR vrU{l}
16 A ANl
17 ¢ dU{l}
18 wy — {p|pewnA{p} ¢C} // Remove from wy literals that appear in the core.
19 if wy =0 then
20 test literals in I by another algorithm
21 A=ANT
22 break // Done with the chunk

23 return vy

Figure 3.13: Algorithm 7 - Core based with chunking

3.1 Backbone computation using IPASIR 35

amount of them (Lines 5 and 6), therefore also working with chunks as
Algorithm 5.

Listing 3.7 shows our IPASIR implementation, requiring a roll back
clause so all literals in the block can be negated and added as single clause

or clause, and later this clause can be deactivated with an assume call.

Listing 3.7: IPASIRBONES-7

1| int chunk_size = 100;

2| int pending = maxVar;

3l if (argec > 2) {

4 chunk_size = atoi(argv[2]);

5 printf("Using supplied chunk size: %d\n", chunk_size);
6]} else {

7 printf("Using default chunk size: %d\n", chunk_size);
8

9lint roll_back = 1;

10|while (pending !'= 0) {

11 for (int i = 0; i < maxVar; i++) {

12 if (sat_solution[i] == 0) continue;

13 for (int 1it = i; (lit<maxVar) && (lit<i+chunk_size); lit++) {
14 if (sat_solution[lit] != 0)

15 ipasir_add(solver, -sat_solution[lit]);

16 }

17 ipasir_add(solver, maxVar + roll_back);

18 ipasir_add(solver, 0);

19 ipasir_assume(solver, -(maxVar + roll_back));

20 int res = ipasir_solve(solver);

21 satCalls++;

22 if (res == SAT) {

23 for (int 1lit = 0; lit<maxVar; lit++) {

24 if (sat_solution[lit] != 0) {

25 if (sat_solution[lit] != ipasir_val(solver, lit+1)) {
26 sat_solution[lit] = 0;

27 pending--;

28 }

29 }

30

31 } else {

32 for (int lit=i; (lit<maxVar) && (lit<i+chunk_size); lit++) {
33 if (sat_solution[lit] != 0) {

34 bbonesFound++;

35 backbones[1lit] = sat_solution[lit];

36 ipasir_add(solver, sat_solution[lit]);
37 ipasir_add(solver, 0);

38 sat_solution[lit] = 0;

39 pending--;

40 }

41 }

42 }

43 ipasir_add(solver, maxVar + roll_back);

44 ipasir_add(solver, 0);

45 roll_back++;

36 Chapter 3: Computing Backbones

The screenshot in Figure 3.14 shows the execution results of Algorithm
7, the core-based with chunking algorithm, using buildroot.cnf model.
Note that chunk size has been set to 100 since this is the default value in

minibones [Janota et al., 2015] and EDUCIBones [Zhang et al., 2020].

992 53996 53997 53998 53999 54000 5UEA1 54602 5S5UEB3 S5UEB6 S5UBE8B 54813 54815 54816 5UE18 54819 5uU821 54
923 546024 54825 54826 5UB27 54028 5U029 54636 5431 54Ue32 54833 54834 5u835 54836 5uUe37 5485y 5ue58 54
060 5Ue65 5UB66 S5UB6G8 S5UAE9 SUBTL 54872 SUeTU SUETS SURTT 5UBTE 5U886

c App-Solver: bin/ipasirbones7-minisat220
c Model name: bin/blend/buildroot.cnf

c Solver: minisat228

c Chunk size 8 180

(=4

(=4

=

=

SAT solver calls : 6138
Formula Variables: 54880
Formula Clauses : 194017
Backbone size 8 16834

real 0m18.189s
user 8ml8.169s
sys eme.e1es

Figure 3.14: Running Algorithm 7 on buildroot.cnf

3.2 Heuristics

This section describes several heuristics to improve Algorithms 1-7 perfor-
mance. Although some of them were already introduced in the previous
section, they are not bound to any specific algorithm, and thus they could
be used in new algorithms. These heuristics target at performing back-
bone filtering, equivalently implicant reduction, that is, identifying vari-
ables or literals which are not backbone candidates and can be skipped
during testing, so the number of SAT calls and computation effort in eval-
uating them is reduced. Examples described below are the literal filtering
[Janota et al., 2015], and also the identification of one-literal clauses dur-
ing the CNF/DIMACS file load as backbones, which is a heuristic we have

not found in the backbone literature.

[« 0T B UV)

3.2 Heuristics 37

The insertion of the backbone into the formula is not properly a reduction
of the implicant size nor does identify a backbone, but it does improve

performance.

3.2.1 Insertion of the backbone into the formula

A heuristic to speed up backbone computation is inserting the backbone
literal into the formula (SAT-solver object) once it has been found as such
(Listing 3.8). This is done by calling ipasir_add function with the newly
identified backbone literal first and then calling again with 0. This will
have the same effect as adding a clause to the CNF formula of the DI-

MACS file only composed of the literal number plus the zero:

Listing 3.8: Heuristic: Adding backbones to the formula

if (res == UNSAT) {
bbonesFound++;
backbones[i] = new_backbone_literal;

ipasir_add(solver, new_backbone_literal);
ipasir_add(solver, 0);

}

3.2.2 Literal filtering

During the iterative process of checking if each literal is in the backbone or
not, the SAT-solver is called in every loop. When the result is satisfiable, a
new solution is available, which might be different from the ones obtained
before. Checking literals from that new solution and comparing them to
the existing upper bound will help reduce the number of checks. If the
literal obtained for the new satisfiable solution is different from the literals

obtained in previous satisfiable solutions (upper bound) then that variable

38 Chapter 3: Computing Backbones

cannot be part of the backbone. Listing 3.9 shows an IPASIR-based code.
Note that this check loop is only needed for variables not yet processed in
order to improve performance, as the goal is to identify which ones of the
pending variables are backbone candidates. Variables found as not a valid
candidate for the backbone are identified with a 0 value, meaning it can
be skipped during further variable checks, therefore saving a SAT call in

that case.

Listing 3.9: Heuristic: Code for literal filtering

for (int 1lit = i+1; 1lit < maxVar; lit++) {
if ((sat_solution[lit] != 0) &&
(sat_solution[lit] != ipasir_val(solver, 1lit+1))) {
sat_solution[lit] = 0;

}

For this heuristics to work, a sat_solution array is kept, which stores
the results of the first satisfiable call performed. Then, after every SAT call
with satisfiable result, variables are checked and updated to 0 when they

are no longer backbone candidates (upper bound).

3.2.3 Identification of one-literal clauses

When reading the CNF/DIMACS file, identify those clauses consisting of
a single literal. Therefore they are part of the backbone (if the formula/-
model is satisfiable), so no need to make any checks with them. Adding
those literals to the formula will identify backbones beforehand without
performing any SAT call (Listing 3.10). The empirical analysis of formu-
las for configuration models shows a high percentage of backbone literals
appearing as one-literal clauses in the original formula. For example, the

buildroot.cnf model, used in the previous section to illustrate the algo-

3.2 Heuristics 39

rithms’ execution, has 16.783 unary clauses out of a total of 16.834 back-

bone literals. Additional model analysis is provided at table 3.1.

Listing 3.10: Heuristic: Identification of one-literal clauses from CNF/DI-

MACS file
/] add to the solver
ipasir_add(solver, num);
if (num==0) {
if (numcount==1) {
/| a clause with only one literal, then it is a backbone
bblist.push_back(lastnum);
numcount=0;
} else {

lastnum = num;
numcount++;

3.2.4 Cascading CNF literals

A step forward from the previous heuristics is to perform a cascaded anal-
ysis of the literals of the CNF formula as they are read from the DIMACS
file. The process will consist of several loops, performing the following

tasks until no change is made in a loop:

* Select a clause.

* If the clause has a single literal clause, add the literal to the backbone
list.

 If the clause has several literals, for each one check if the comple-
mentary literal is a backbone.

e If all complementary literals are backbones except one, add that lit-

eral to backbone.

This heuristic was coded in a Ruby script (Listing 3.11) to perform an

empirical evaluation of its impact.

— e
= O W0 ~NOULU & WN -

QWU U Uguu U s B AN D AN D DB AWWWWWWWWWWNNNNNNNRNNNE 2 B e e s e e
OO VIO UDEWNFR,OOVLOMNOODIRWNNR,OVOMNNOUNREWRNFR,OWVWRMNODINR WNROWLWORONOGO AN WRN

40 Chapter 3: Computing Backbones

Listing 3.11: Cascading Literals

Dir.glob(’*.cnf’) do |dimacs|
model_time = Time.now
input_lines = File.read(dimacs)
puts "Model: #{dimacs}"
backbones = Array.new(0)
bb_count = 0
bb_candidates_count = 0
bb_candidate = 0

num_loop = 0

while true
new_backbones = 0
num_loop += 1
input_lines.each_line do |line]
if line =~ [~[c]/
skip
elsif line =~ [~p cnf/
problem = line.split(" ")
num_vars = problem[2]
num_clauses = problem[3]
if num_vars == 0
puts("Num cnf variables: #{num_vars}")
puts("Num cnf clauses : #{num_clauses}")
end
else
literals = line.split(" ")
literals.each do |[lit|
int_lit = lit.to_i
if int_lit !'= 0
if backbones[int_lit.abs].nil? and bb_candidates_count==
bb_candidate = int_1lit
bb_candidates_count += 1
elsif backbones[int_lit.abs] == int_lit*(-1)

this candidate is the negation of a backbone, good to go
elsif (bb_candidates_count > 0) and backbones[int_lit.abs].nil?
break # more than one candidate, not useful...
else
break # this 1lit is already in backbone
end

elsif int_lit ==
if bb_candidates_count == 1
backbones|[bb_candidate.abs] = bb_candidate
bb_count += 1
new_backbones += 1
end
end
end
bb_candidates_count = 0
bb_candidate = 0
end
end
puts "Loop #{num_loop} => #{new_backbones} backbones found."

break if new_backbones ==
end
puts "Backbone count: #{bb_count}"
puts "Processing time: #{Time.now - model_time}s."

backbones.each { |bb| print "#{bb} " unless bb.nil? }
print "\n"
end

Table 3.1 analyzes the result of identifying backbones directly from the
CNF/DIMACS file at the time of file reading. [Fernandez-Amoros et al.,

3.2 Heuristics 41

2023] used this model set in configuration management and software en-

gineering domain.

Table 3.1: Direct backbone identification from CNF formula

Model Baclfbone 823_81:5 Cascading CNF Literals

Size Backbones | Loop 1 | Loop 2 | Loop 3 | Backbones | Time (s.)
axtls 127 127 127 0 0 127 0,0120
buildroot 16.834 16783 | 16.790 0 0 16.790 1,4350
busybox 762 713 714 0 0 714 0,1018
coreboot 20.966 16012 | 16.020 0 0 16.020 2,7228
embtoolkit 4.422 4383 | 4.389 0 0 4.389 0,5606
fiasco 111 93 93 0 0 93 0,0064
freetz 10.093 9504 | 9.504 0 0 9.504 1,8116
linux 27.239 23368 | 22.306 7 0 22.313 6,1762
toybox 74 74 74 0 0 74 0,0054
uClibc 383 381 383 0 0 383 0,0322

3.2.5 Coding and performance

Despite the improvement obtained by the different algorithms and the
heuristics above, some authors have also identified other means to im-
prove performance. [Mitchell, 2005] identified improvements factors in
the range from 3 to 8 by using cache aware implementations. Some direc-

tions provided are:

* Reduce the memory footprint
 Use arrays instead of pointers.

 Store data in memory in the same sequence it will be accessed.

Our IPASIR implementation follows these directions and implements
required data structures in arrays instead of C++ vectors, which make an
extensive use of pointer. In addition, those data structures will be later

accessed in a sequential way.

42 Chapter 3: Computing Backbones

3.3 Tweaking the Algorithms

This section provides improved versions of the algorithms in Section 3.1.
While the algorithms themselves are not changing dramatically, the heuris-

tics and code enhancements significantly reduce the computing time:

* Identification as backbones all those literals from clauses with that
one literal. This is done while reading the source CNF/DIMACS file.

* Backbone insertion: Adding backbones as a single literal clause to
the formula when it has been identified as such after the SAT call
returns.

* Literal lifting: After a satisfiable SAT-solver call, compare all vari-
ables pending for backbone checking with the results of the SAT-
solver. If, for a given variable, its literal from the last SAT-solver
solution differs from the literal from the initial SAT solution, any of

the two literals for that variable can be part of the backbone.

0N U A WN

— =
= O O

12

18

3.3 Tweaking the Algorithms 43

3.3.1 Enhancing Algorithm 3 - Version a

This version of Algorithm 3 includes the three following heuristics (List-

ing 3.12):

Listing 3.12: IPASIRBONEs-3a

int* backbones = new int[maxVar];
for (int i=0; i<maxVar; i++) backbones[i] = 0;

ipasir_solve(solver);
satCalls++;

int* sat_solution = new int[maxVar];

for (int 1it = 1; 1it <= maxVar; lit++) {
sat_solution[lit-1] = ipasir_val(solver, 1lit);

}

for (size_t b=0; b<bblist.size(); b++) {
if (backbones[abs(bblist[b])-1] == 0) {
bbonesFound++;
backbones[abs(bblist[b])-1] = bblist[b];
sat_solution[abs(bblist[b])-1] = 0;
}

printf("\nc Initializing %d unary clauses as backbones\n", bbonesFound);

for (int i = 0; i < maxVar; i++) {
int candidate = sat_solution[i];
if (candidate == 0) continue;
ipasir_assume(solver, -candidate);
int res = ipasir_solve(solver);
satCalls++;
if (res == UNSAT) {
bbonesFound++;
backbones[i] = candidate;
ipasir_add(solver, candidate);
ipasir_add(solver, 0);

} else {
for (int 1lit = i+1; 1lit < maxVar; lit++) {
if ((sat_solution[lit] !'= 0) && (sat_solution[lit]
!= ipasir_val(solver, lit+1))) {
sat_solution[lit] = 0;

Figure 3.15 shows a notable reduction of SAT calls’ (5.375 from 22.158)

when compared to Algorithm 3 (Listing 3.3). While these SAT calls seem
to be easy, as it is reflected only with a small execution time reduction
(~ —1s.). As these are only preliminary evaluations, a complete analysis

using other solvers will be done in Chapter 4.

44 Chapter 3: Computing Backbones

8 53961 53962 53963 53964 53965 53966 53967 53968 53969 539760 53971 53972 53973 53979 53
983 53984 53992 53996 53997 53998 53999 54866 54801 54062 54083 540606 548608 54813 54015
54816 54018 54019 54621 54023 54824 54825 54P26 54027 54628 54029 5UA30 54031 54A32 5463
3 54634 54835 54836 54637 5uUe54 54058 54066 54065 54866 54868 5UM69 54071 546872 54874 54
875 54077 54878 5U886
c App-Solver: bin/ipasirbones3a-minisat22e

Model name: bin/blend/buildroot.cnf

Solver: minisat22e

SAT solver calls : 5375
Formula Variables: 5U080
Backbone size : 16834

real Bmll.550s
user Omly.549s
Ome . 086s

Figure 3.15: Execution of Algorithm 3a with buildroot.cnf model

3.3.2 Enhancing Algorithm 7 - Version a

Algorithm 7 can be tweaked in the same way that Algorithm 3 (3.5): adding
detection of backbones by identifying one-literal clauses at the time of
reading the DIMACS file. Listing 3.13 shows this enhanced version.
In this case, our preliminary evaluations (Figure 3.16) do not show any
time improvement when used with the minisat220 SAT-solver.
Interestingly, when the cadicalsc2020 SAT-solver is used, the time re-

duction is dramatic (Figure 3.17).

3.3 Tweaking the Algorithms 45

Listing 3.13: IPASIRBONESs-7a

1| for (size_t b=0; b<bblist.size(); b++) {
2 if (backbones[abs(bblist[b])-1] == 0) {

3 bbonesFound++;

4 pending--;

5 backbones[abs(bblist[b])-1] = bblist[b];

6 sat_solution[abs(bblist[b])-1] = 0;

7 }

8

9| printf("\nc Initializing %d unary clauses as backbones\n", bbonesFound);
10

11| while (pending '= 0) {

12 for (int i = 0; i < maxVar; i++) {

13 if (sat_solution[i] == 0) continue;

14 for (int 1lit = i; (lit<maxVar) && (lit<i+chunk_size); lit++) {
15 if (sat_solution[lit] != 0)

16 ipasir_add(solver, -sat_solution[lit]);

17 }

18 ipasir_add(solver, maxVar + roll_back);

19 ipasir_add(solver, 0);

20 ipasir_assume(solver, -(maxVar + roll_back));

21

22 int res = ipasir_solve(solver);

23 satCalls++;

24 if (res == SAT) {

25 for (int 1it = 0; lit<maxVar; lit++) {

26 if (sat_solution[lit] !'= 0) {

27 if (sat_solution[lit] != ipasir_val(solver, lit+1)) {
28 sat_solution[lit] = 0;

29 pending--;

30 }

31 }

32

33 } else {

34 for (int lit=i; (lit<maxVar) && (lit<i+chunk_size); lit++) {
35 if (sat_solution[lit] != 0) {

36 bbonesFound++;

37 backbones[1lit] = sat_solution[lit];

38 ipasir_add(solver, sat_solution[lit]);

39 ipasir_add(solver, 0);

40 sat_solution[lit] = 0;

41 pending--;

42 1

43 }

44 }

45 ipasir_add(solver, maxVar + roll_back);

46 ipasir_add(solver, 0);

47 roll_back++;

46 Chapter 3: Computing Backbones

53835 5383
App-Solver: bin/ipasirbones7a-minisat22e
Model name: bin/blend/buildroot.cnf
Solver: minisat22e
Chunk size G 108
SAT solver calls : 5449
Formula Variables: 54888
Formula Clauses : 388834
Backbone size g 16834
53845 53846 3 53851 3 3 3 3 3 3 358 5385 360 3 3863
53866 53867 53869 : 3878 8 3881
53884 53886 3 53897 398 3 B8 : 2 : By 53985 539688
53914 53915 53917 3 : 3926 53929
53932 53933 53935 53948 53944 53947
53956 53954 53957 : 53963 53967 3 53978
53973 53979 33 53984 53998 5ue80 el 54802 BE 54808
54816 54818 : 5ue21 : B B 5U6826 B 5ue28 € s5u83e : 54833
5ue3e 5u837 : Suess B6E 3 2 5uee6s 3 Sue71 € sue7y : sua7s8
real 8m23.202s
user em23.181s
sys Ame . 0265

Figure 3.16: Execution of Algorithm 7a with buildroot.cnf model

53698 53691 53692 53693 53694 53695 53696 53697 53698 53699 53785 53789 53770 53776 5378
53791 53793 53797 538600 53861 538602 538605 53820 53822 53823 53824 53825 53826 53827 5382
53831 53832 53833 53834 53835 53836 53839 538u6 53841 53842
App-Solver: bin/ipasirbones7a-cadicalsc2028
Model name: bin/blend/buildroot.cnf
Solver: cadical-sc2828
Chunk size g 186
SAT solver calls : 2938
Formula Variables: 540860
Formula Clauses : 388834
Backbone size b 16834
53845 538U6 3 53851
53866 53867 368 53869
53884 53886 3 53897
53914 53915 53917
53932 53933 53935
53958 53954 53957
53973 53979 33 53984
5uel16 5U6818 3 5ue21
5uU636 54037 : 546858
0mle.868s
Omle.857s
sys eme.e1es

Figure 3.17: Execution of algorithm 7a (cadicalsc2020 solver) with buil-
droot.cnf model

Chapter 4: Experimental Validation

This chapter reports an in-depth empirical evaluation of our IPASIR pro-
grams, presented in Chapter 3. First, Section 4.2 evaluates each IPASIR
program with a variety of SAT-solvers, thus identifying (i) what solver
works best for each program, and (ii) what program/solver has the best
performance. Later, Section 4.3 compares our best program/solver with
two state-of-the-art backbone detection tools: minibones [Janota et al., 2015]

and EDUCIBone [Zhang et al., 2020].

4.1 Experimental Setup

Our evaluation targets two Research Questions:

RQ1: Best IPASIRBONES/SAT combination What combination of IPASIRBONES
program and SAT-solver achieves the best time performance?
RQ2: IPASIRBONES vs. state-of-the-art tools What is the IPASIRBONES’ time

performance compared to minibones and EDUCIBone?

To do so, we started developing our IPASIRBoONES’ prototypes on a PC.
The IPASIR environment was set up using the distribution available from
[Balyo, 2017], which is the one used in most SAT competitions. As this

distribution is Linux-based, it was installed in an Ubuntu instance of the

48 Chapter 4: Experimental Validation

Windows Subsystem for Linux 2 (WSL2), running under Windows 11.
Once the prototypes were tested in a PC, their performance was eval-
uated in a cluster provided by the UNED GISS' research group, which
is equipped with an Intel™ Xeon™ CPU E5-2660 v4 2.00GHz with 28
physical cores with 2 threads each one and 220.3 GiB of available RAM
memory for the operating system, an Ubuntu Release 20.04.5 LTS 64-
bit with Kernel Linux 5.4.0-135 generic x86_64. Note that the captures
and values used in Chapter 3 were taken from the development machine,
whereas the captures and values in this current chapter were taken from
the GISS cluster.

Our benchmark was composed of two sets of configuration models
taken from relevant literature on software engineering and software prod-

uct lines:

1. MIG: 116 configuration models proposed in [Krieter et al., 2018]
[Krieter et al., 2021], and also used in [Plazar et al., 2019].
2. FA: 10 configuration models provided in [Fernandez-Amoros et al.,

2023].

The standard IPASIR distribution includes, by default, interfaces with

the following SAT-solvers:
* lingelingbcj
* minisat220

* picosat961

Additionally, the following SAT-solver interfaces were selected for evalu-

ation:

Thttp://www.issi.uned.es/giss

http://www.issi.uned.es/giss

4.1 Experimental Setup 49

* From SAT Competition 2020, cadicalsc2020 [Biere et al., 2020]
* From SAT Competition 2017, glucose4 [Audemard and Simon, 2017]

abedsat_i20 [Balyo et al., 2020] was also evaluated, but after some pre-
liminary executions, we noticed its performance with IPASIR was out of
range when compared to the other solvers. Table 4.1 shows the average ex-
ecution time (100 loops) of IPASIRBoNEs-3 for the MIG set of models using

the different SAT-solvers. As a result, abcdsat_i20 was discarded.

Table 4.1: abcdsat_i20 compared to other SAT-solvers with IPASIRBoNES-3

Program SAT-solver Average Time (s.)
IPASIRBoNES-3 | abcdsat_i20 79.87948
IPASIRBoONES-3 | cadicalsc2020 0.01967
IPASIRBONES-3 | glucose4 0.08300
IPASIRBoNEs-3 | lingelingbc;j 0.17038
IPASIRBONES-3 | minisat220 0.07710
IPASIRBONES-3 | picosat961 0.22023

The actual backbone computation was managed via an R script (List-
ing 4.1) , which reads a configuration file indicating the number of loops
(executions of individual backbone programs solver and model combina-
tions), the source path for the backbone programs and the source path
for the model set. Note that all the loops for the 5 backbone programs
for a particular algorithm were executed with a single script call on all
the models from the provided model set. The computation part of ev-
ery model-backbone program combination, taking advantage of the high
number of cores of the computer, was performed in parallel, therefore
saving time during evaluation. The time elapsed for both MIG and FA

model sets was actually more than 10 times smaller than the overall total

W ~NO U A WN P

NN NN B 2R R e s e b
EWNPOOOMNOUDLWNROUW

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

50 Chapter 4: Experimental Validation

CPU CORE time in all algorithms. Executions for minibones and EDUCI-
Bone had a lower parallel multiplier due to they were only two solvers in
the set while each algorithm had five SAT-solvers to run. Table 4.2 shows
the elapsed time for each algorithm, the aggregated CPU time used for
computing the backbones during that elapsed time, and the multiplier for

those timings.

Listing 4.1: run_tests.R

library
library
library
library

doParallel)
foreach)
iterators)
tidyverse)

—~—— —~

"

print(str_c("Started: ", Sys.time()))
Reading configuration settings from file
args = commandArgs(trailingOnly=TRUE)
if (is.na(args[1])) {
stop("Missing configuration file!")
} else {
Read configuration file
config_str <- read_file(args[1])
num_loops <- str_extract(config_str, "num_loops\\s*=\\sx*(\\d+)", group=1)
cpu_cores <- str_extract(config_str, "cpu_cores\\s*=\\sx(\\d+)", group=1)
model_path <- str_trim(str_extract(
config_str, "model_path\\s*=\\sx*(.+)(\\s*\\n)", group=1))
solver_path <- str_trim(str_extract(
config_str, "solver_path\\sx=\\sx(.+)(\\s*x\\n)", group=1))
num_loops <- as.numeric(num_loops)
cpu_cores <- as.numeric(cpu_cores)

n

}

Function processing and getting time/results from IPASIRBones
get_run_time <- function(
solver = "" # backbones-SAT-solver executable, include full path
, model = "" # model file name, include .cnf or .dimacs extension
, arg_str = "" # argument string
, solver_path = "" # path to solver executable
, model_path = "" # path to model file
, get_cmd_out = FALSE # return all output from command
) |
Optimized for Linux. Check: decimal point in "real time" and bash/cmd:
runcmd <- str_c("-c¢ \"time ", solver_path, "/", solver, arg_str, " "
, model_path, "/", model, "> /dev/null \"")
cat("Running: ", model, "with:", runcmd, "\n")

system2_out <- system2("bash", runcmd, stdout=FALSE, stderr=TRUE)
cmd_out <- str_flatten(system2_out, collapse="\n")
mins <- str_extract(cmd_out, "real\t(\\d+)m(\\d+)\
secs <- str_extract(cmd_out, "real\t(\\d+)m(\\d+)\
millis <- str_extract(cmd_out, "real\t(\\d+)m(\\d+
millis <- as.numeric(mins) * 60 + as.numeric(secs)
model_vars <- str_extract(cmd_out

, "(c Formula Variables\\sx*:\\s«)(\\d+)", group=2)
model_clauses <- str_extract(cmd_out

, "(c Formula Clauses\\sx*:\\s%)(\\d+)", group=2)

sat_calls <- str_extract(cmd_out

, "(c SAT-solver calls\\sx*:\\s*)(\\d+)", group=2)

(\\d+)s", group=1)
(\\d+)s", group=2)

\, (\\d+)s", group=3)
as.numeric(millis) / 1000

\
\
)

)
)
\

+

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

101
102
103
104
105
106
107
108

4.1 Experimental Setup 51

backbone_size <- str_extract(cmd_out
, "(c Backbone size\\s*:\\sx)(\\d+)", group=2)
list("millis"=as.numeric(millis)

, "solver" = solver

, "model" = model

, "sat"=zattributes(system2_out)$status
, "sat_calls" = as.numeric(sat_calls)

= as.numeric(model_vars)
= as.numeric(model_clauses)
= as.numeric(backbone_size)

, "variables"
, "clauses"
, "backbones"

, "cmd_out" = if (get_cmd_out) cmd_out else ""

)
}
RS RS R main
out_file <- str_replace(args[1], ".cfg$", ".csv")
process_time <- 0
starting paralell setup
registerDoParallel (cpu_cores, cores=cpu_cores)

cat("\n")

cat("Executing ", num_loops, "loops\n")

cat("Model folder: ", model_path, "\n")

cat("Solver folder: ", solver_path, "\n")

cat("CPU cores. Req/Act: ", cpu_cores, "/", getDoParWorkers(), "\n")
cat("Backend name/vers: ", getDoParName(), " ", getDoParVersion(), "\n")
cat("\n")

Headers for csv file
results <- tibble(solvername=

"o "o

modelname="", numvars=0, numclauses=0
, arguments= chunksize = 0, milliseconds=0, backbones=0
, cmd_out= "", .rows=0)

write_csv(results, out_file, append=FALSE, col_names=TRUE)

preparing iterators

models <- list.files(path=model_path, full.names= FALSE, recursive = TRUE)
solvers <- list.files(path=solver_path, full.names= FALSE, recursive = TRUE)
main loop
for (solver_name in solvers) {

cat("Running solver>", solver_name, "...\n")

for (model in models) {
results <- foreach(s=1:num_loops, .combine=rbind
, .packages=c(’'stringr’, “glue’)) %dopar% {
res <- get_run_time(solver=solver_name, model=model
, "", solver_path, model_path)

data.frame(res[["solver"]], res[["model"]],
res[["variables"]], res[["clauses"]],
, 0, res[["millis"]], res[["backbones"]], res[["cmd_out

1)
}

process_time <<- process_time + sum(results$milliseconds)
write_csv(results, out_file, append=TRUE, col_names=FALSE)
TRUE

non

n

}

warnings ()

n

print(str_c("Ended: ", Sys.time()))

52 Chapter 4: Experimental Validation

Table 4.2: Elapsed computing time vs. CPU CORE Time (seconds)

. Elapsed | CPU CORE | Parallel

Algorithm . . N
time Time multiplier
IPASIRBONES-1 19.335 203.096 10,50
IPASIRBONES-2 79.088 805.557 10,19
IPASIRBONES-3 2.732 30.432 11,14
IPASIRBONES-4 16.104 171.561 10,65
IPASIRBONES-5 4.113 48.039 11,68
IPASIRBONES-6 2.976 33.057 11,11
IPASIRBONES-7 2.859 33.282 11,64
IPASIRBONES-3a 2.633 29.574 11,23
IPASIRBONES-7a 2.832 33.074 11,68
minibones + EDUCIBone 1.943 5.796 2,98

4.2 RQ1: Best IPASIRBoNES/SAT combination

This section addresses the individual performance of each IPASIRBoNEs
program by using all five SAT-solvers to identify which solver is the best
suited for each algorithm. In all cases, the same two sets of models were
used: MIG and FA, for easy and hard instances, respectively. In order to
get better statistical relevance, easy models from the MIG set will be run
in a loop of 100 repetitions, and harder models from the FA set will be run

10 times.

4.2.1 IPASIRBoNEs-1

Figure 4.1 compares the number of variables of the model to the backbone
computing time on average. With IPASIRBonEs-1, all SAT-solvers have a
similar linear response in relation to the number of model variables, ex-
cept for some particular hard models. It is clearly visible that the SAT-

solver with the best performance is cadicalsc2020, while lingelingbcj gets

4.2 RQ1: Best IPASIRBoNES/SAT combination 53

the longest execution times.

Algorithm1 — SAT performance comparison for mig model set. Variables.
116 models.100 loops

solvername
cadicalsc2020

glucose4
—— lingelingbcj
— minisat220
M picosat961
05- ‘/\/\/J\/\M

Time (seconds)

1200 1250 1300 1350 1400
Number of variables

Figure 4.1: IPASIRBoNEs] - Time vs. variables for MIG

On the other side, Figure 4.2 performs the comparison for the FA model
set. It shows a step increase in the computation time as the number of vari-

ables increases, more visible for lingelingbcj and picosat961 SAT-solvers.

4.2.2 IPASIRBONEs-2

IPASIRBONES-2 is not so uniform as the one for the implicant listing al-
gorithm, with a noticeable jitter in the graph (Figure 4.3. Glucose4 SAT-
solver now is not the best performer, but there are other 2 SAT-solvers with
similar performance (cadicalsc2020 and minisat220).

FA results show a more stepped increase of computing time for larger
models, but with a more linear response with respect to the number of

variables (Figure 4.4).

54 Chapter 4: Experimental Validation

Algorithm1 - SAT performance comparison for fernandez model set. Variables.
10 models.10 loops

6000 -

4000~
solvername

~—— cadicalsc2020
~—— glucose4
—— lingelingbcj

—— minisat220

Time (seconds)

~— picosat961

2000~

0 50000 100000 150000
Number of variables

Figure 4.2: IPASIRBoNEs]1 - Time vs. variables for FA

Algorithm2 — SAT performance comparison for mig model set. Variables.
116 models.100 loops

(

N solvername

~—— cadicalsc2020
— glucose4
— lingelingbcj
—— minisat220

Time (seconds)

L

~— picosat961

0.5~

' ' ' ' '
1200 1250 1300 1350 1400
Number of variables

Figure 4.3: IPASIRBoNEs-2 - Time vs. variables for MIG

4.2 RQ1: Best IPASIRBoNES/SAT combination 55

Algorithm2 — SAT performance comparison for fernandez model set. Variables.
10 models.10 loops

20000~

15000~
solvername

cadicalsc2020
glucose4

— lingelingbcj

Time (seconds)

— minisat220

)
5]
]
S

picosat961

5000~

0 50000 100000 150000
Number of variables

Figure 4.4: IPASIRBoNEs-2 - Time vs. variables for FA

4.2.3 IPASIRBoNEs-3

As in previous cases, every model from the MIG set was executed 100
times, while big models from FA set were executed 10 times. Total accu-
mulated execution times for each model set and each SAT-solver are listed
in Table 4.3. The first conclusion from that table is that cadicalsc2020 is the
faster SAT-solver from the selected ones providing the IPASIR interface.
In addition, lingelingbcj performs comparatively worse with the smaller
models from the MIG set. All samples from this set are uniformly slower,
without any particular case accountable for such deviation.

Figures 4.5 and 4.6 show the execution results for the MIG set, cor-
relating the effect of the number of variables and the size of the back-
bone, respectively. When comparing SAT-solvers, it is clearly visible that

the best performing for this algorithm and the small and medium size of

56 Chapter 4: Experimental Validation

Table 4.3: SAT time comparison for IPASIRBoNEs-3 (seconds)

SAT-solver MIG set | FA set
cadicalsc2020 22.2 | 1.921
glucose4 75.5 | 3.649
lingelingbc;j 148.0 | 3.778
minisat220 70,6 4.080
picosat961 212.0 | 10.325

the models of this set is the cadicalsc2020 SAT-solver. Another conclusion
also visible is that both, the number of variables and the size of the back-
bone are not the only dimensions driving the time required to compute

the backbone list of a model.

Algorithm3 - SAT performance comparison for mig model set. Variables.
116 models.100 loops

solvername

cadicalsc2020

glucose4

— lingelingbcj

Time (seconds)

~ minisat 220

1200 1250 1300 1350 1400
Number of variables

Figure 4.5: IPASIRBoNEs-3 - Time vs. variables for MIG

Figures 4.7 and 4.8 show the effect of the number of variables and the
size of the backbone, respectively for the FA model set. When comparing

SAT-solvers, it is also clearly visible that the best performing for this al-

4.2 RQ1: Best IPASIRBoNES/SAT combination 57

Algorithm3 — SAT performance comparison for mig model set. Backbones.

solvername
cadicalsc2020

glucosed

—— lingelingbcj
—— minisat220

Time (seconds)

picosat961

"ol ——

I

5 100 125

25 50 7
Number of backbones

Figure 4.6: IPASIRBoONES-3 - Time vs. backbones for MIG

gorithm now for the big size of the models of this set is the cadicalsc2020
SAT-solver. For bigger models, time increase is not so pronounced as in

IPASIRBONES-2, specially for the best performer SAT-solver, the green one.

4.2.4 IPASIRBoNEs-4

For IPASIRBoNEs-4, cadicalsc2020 is again the best SAT-solver for MIG,
followed by glucose4 and minisat220. It also presents some small peaks
for the same models that made it harder for previous algorithms (Figure
4.5). Lingelingbcj is the worst performer for this algorithm, with higher
peaks on harder MIG models. For bigger models from FA set (Figure 4.7),

glucose4 and minisat220 have slightly lower times than cadicalsc2020.

58 Chapter 4: Experimental Validation

Algorithm3 — SAT performance comparison for fernandez model set. Variables.
10 models.10 loops

800~

600~

solvername
cadicalsc2020
glucose4

lingelingbej

Time (seconds)
&

minisat220

picosat961

200-

0 50000 100000 150000
Number of variables

Figure 4.7: IPASIRBoNEs-3 - Time vs. variables for FA

Algorithm3 — SAT performance comparison for fernandez model set. Backbones.

800~

600~

solvername
cadicalsc2020
— glucose4

—— lingelingbcj

Time (seconds)
8

~—— minisat220

picosat96l

200~

0 10000 20000
Number of backbones

Figure 4.8: IPASIRBoNEs-3 - Time vs. backbones for FA

4.2 RQ1: Best IPASIRBoNES/SAT combination

Algorithm4 — SAT performance comparison for mig model set. Variables.
116 models.100 loops

15-
1.0-
solvername
ﬁ ~—— cadicalsc2020
5 — glucose4
@
2 —— lingelingbcj
o
E —— minisat220
=
~— picosat961
05~

1200 1250 1300 1350 1400
Number of variables

Figure 4.9: IPASIRBoNEs-4 - Time vs. variables for MIG

Algorithm4 — SAT performance comparison for fernandez model set. Variables.
10 models.10 loops

3000~

solvername

—— cadicalsc2020

2000~
— glucose4

—— lingelingbcj

Time (seconds)

—— minisat220

~— picosat961

1000~

| ' '
0 50000 100000 150000
Number of variables

Figure 4.10: IPASIRBONES-4 - Time vs. variables for FA

60 Chapter 4: Experimental Validation

4.2.5 IPASIRBoONES-5

IPASIRBoONES-5 presents a flat response time (Figure 4.11) when executed
with MIG model set, having models in the range from 1.100 to 1.400 vari-
ables. Best SAT performer, cadicals2020 also provides lower jitter in com-
puting time, while lingelingbcj presents higher variances for some mod-
els. In respect to harder models from fernandez model set, again cadi-
calsc2020 SAT-solver presents the flattest computation time (Figure 4.14)

and picosat961 quickly increases required computation time.

Algorithm5 — SAT performance comparison for mig model set. Variables.
116 models.100 loops

1.00-

0.75-

solvername

cadicalsc2020

lucose4
0.50- gl

1200 1250 1300 1350 1400
Number of variables

—— lingelingbcj
—— minisat220

Time (seconds)

picosat961

Figure 4.11: IPASIRBoNES-5 - Time vs. variables for MIG

4.2.6 IPASIRBONES-6

For IPASIRBoNEs-6, SAT-solvers cadicalsc2020 and lingelingbcj must be dis-

carded since, despite the algorithm being the same for all SAT-solvers,

4.2 RQ1: Best IPASIRBoNES/SAT combination 61

Algorithm5 — SAT performance comparison for fernandez model set. Variables.
10 models.10 loops

750~

solvername

cadicalsc2020

o
S
S

glucosed

— lingelingbcj

Time (seconds)

— minisat220

picosat961

250~ //

0 50000 100000 150000
Number of variables

Figure 4.12: IPASIRBONES-5 - Time vs. variables for FA

these two produce wrong results. This failure is due to the call made to
ipasir_failed() used in combination with a previous call to ipasir_assume()

does not produce correct results.

Therefore, for IPASIRBoNES-6, best SAT-solvers are minisat220, followed

by glucose4.

4.2.7 IPASIRBONES-7

SAT-solvers for IPASIRBoNEs-7 follow the same pattern as in the previous
ones, with cadicalsc2020 as the best performer for all models (Figures 4.15

and 4.16).

62 Chapter 4: Experimental Validation

Algorithm6 — SAT performance comparison for mig model set. Variables.
116 models.100 loops

«‘J\/—”“ﬂ/\ﬁwﬁ:
IR

0.6-
solvername
804 —— cadicalsc2020
§ —— glucose4
2 —— lingelingbcj
o
£ — minisat220
[
~— picosat961
M~ —
02~ /MJ‘(LJ

R
(.
)V

1200 1250 1300 1350 1400
Number of variables

0.0-

Figure 4.13: IPASIRBoNEs-6- Time vs. variables for MIG

Algorithm6 — SAT performance comparison for fernandez model set. Variables.
10 models.10 loops

750~

solvername
500~ —— cadicalsc2020
— glucose4

— lingelingbcj

Time (seconds)

—— minisat220
~— picosat961

250

| ' '
0 50000 100000 150000
Number of variables

Figure 4.14: IPASIRBoNES-6- Time vs. variables for FA

4.2 RQ1: Best IPASIRBoNES/SAT combination

63

Algorithm?7 — SAT performance comparison for mig model set. Variables.
116 models.100 loops

0.75-
solvername
B 050~ — cadicalsc2020
§ —— glucose4
\dm-; —— lingelingbcj
E —— minisat220
=
~— picosat961
| A

b
S 1 10\V W

1200 1250 1300 1350 1400
Number of variables

Figure 4.15: IPASIRBoNEs-7 - Time vs. variables for MIG

Algorithm7 — SAT performance comparison for fernandez model set. Variables.
10 models.10 loops

800~
600~
solvername
ﬁ ~—— cadicalsc2020
§ 400- ~— glucose4
L — lingelingbcj
o
E —— minisat220
= .
~— picosat961
200~
0-

| ' '
0 50000 100000 150000
Number of variables

Figure 4.16: IPASIRBONES-7 - Time vs. variables for FA

64 Chapter 4: Experimental Validation

4.2.8 Enhanced Algorithms: IPASIRBoNEs-3a&7a

The SAT-solvers for these programs follow the same pattern as in the pre-
vious ones, with cadicalsc2020 as the best performer for all models. Plots
for algorithm 3a are displayed in Figures 4.5 and 4.7. Plots for algorithm

7a are shown in Figures 4.15 and 4.16.

Algorithm3a — SAT performance comparison for mig model set. Variables.
116 models.100 loops

solvername

ipasirbones3a-cadicalsc2020
ipasirbones3a-glucose4
— ipasirbones3a-lingelingbcj

~— ipasirbones3a-minisat220

Time (seconds)

‘ ipasirbones3a-picosat961

1200 1250 1300 1350 1400
Number of variables

Figure 4.17: IPASIRBoNEs-3a- Time vs. variables for MIG

4.2.9 Conclusions on individual algorithms

Our experimental results show a high degree of variability among the al-
gorithms, SAT-solvers, and model sizes, which makes it difficult to select
a unique IPASIRBoNEs/SAT-solver combination fitting all scenarios. Table
4.5 shows a detailed overview of those results. Each row provides the total

time for the MIG set and the FA model set plus the total computation time.

4.2 RQ1: Best IPASIRBoNES/SAT combination

65

Algorithm3a — SAT performance comparison for fernandez model set. Variables.
10 models.10 loops

800~
600~
solvername
] ~— ipasirbones3a-cadicalsc2020
GS) ~— ipasirbones3a-glucose4
& 4007 —— ipasirbones3a-lingelingbcj
o
E — ipasirbones3a-minisat220
=
~— ipasirbones3a-picosat961
200-
0-

50000 100000 150000
Number of variables

o-

Figure 4.18: IPASIRBoNEs-3a- Time vs. variables for FA

Algorithm7a — SAT performance comparison for mig model set. Variables.
116 models.100 loops

0.8-
0.6~
solvername
ﬁ ~— ipasirbones7a-cadicalsc2020
§ — ipasirbones7a-glucose4
30 4 — ipasirbones7a-lingelingbcj
© 0.4-
E —— ipasirbones7a-minisat220
=
~— ipasirbones7a-picosat961
] e s S
- ﬁ w /r\%—;

B N WV

0.0-
' ' ' ' '
1200 1250 1300 1350 1400
Number of variables

Figure 4.19: IPASIRBoNES-7a - Time vs. variables for MIG

66 Chapter 4: Experimental Validation

Algorithm7a — SAT performance comparison for fernandez model set. Variables.
10 models.10 loops
800~

600~

solvername

ipasirbones7a-cadicalsc2020

N
5]
S

ipasirbones7a-glucose4

— ipasirbones7a-lingelingbcj

Time (seconds)

~— ipasirbones7a-minisat220

ipasirbones7a-picosato61

200~

0 50000 100000 150000
Number of variables

Figure 4.20: IPASIRBoNEs-7a - Time vs. variables for FA

Each total is calculated as the sum of the average time to compute the
backbone of each model in the set. Models for MIG were computed 100
times each before calculating the individual model average and models
for FA were also computed 10 times each before calculating that average.

Times are expressed in seconds.

With respect to each individual program, Table 4.4 shows the best

solver times.

Overall best algorithm and SAT-solver combination are the IPASIRBONEs-
7a and IPASIRBoNEs-7 algorithms working with cadicalsc2020 SAT-solver.
Anyhow, the combination of the IPASIRBonEs-3 and IPASIRBoNEs-3a algo-
rithms together with cadicalsc2020 SAT-solver also achieved similar per-
formance. Note that SAT-solver lingelingbcj was not considered for IPASIR-

BonNEs-6as this SAT-solver fails as described in 4.2.6.

4.3 RQ2: IPASIRBONES vs. state-of-the-art tools 67

Table 4.4: Best solver per algorithm (seconds)

Algorithm SAT-solver | MIG | FA Total
IPASIRBoNEs-1 minisat220 2765 | 11911 | 14676
IPASIRBoONEs-2 | cadicalsc2020 | 4359 | 86384 | 90743
IPASIRBoNES-3 | cadicalsc2020 | 233 1920 | 2153
IPASIRBoNEs-3a | cadicalsc2020 | 235 1917 | 2153
IPASIRBoNEs-4 | glucose4 3086 | 10441 | 13527
IPASIRBoONES-5 | cadicalsc2020 | 259 | 2162 | 2421
IPASIRBoONES-6 | cadicalsc2020 | 259 | 3056 | 3314
IPASIRBoNES-7 | cadicalsc2020 | 233 | 1793 | 2026
IPASIRBoNES-7a | cadicalsc2020 | 235 | 1760 | 1995

4.3 RQ2: IPASIRBONES vs. state-of-the-art tools

There are other specialized tools in computing the backbone from a given
formula in CNF format. The most outstanding one [Janota et al., 2015]
is minibones, and another one is EDUCIBone [Zhang et al., 2020]. This
section will perform a comparison between the best performers IPASIR-
BoNEsprograms described in Section 4.2.9 and these two.

Minibones and EDUCIBone have also been evaluated under the same
conditions and model sets as the IPASIRBoNEs programs, both have been
evaluated to separately compute MIG and fernandez model sets, executing
a loop of 100 repetitions for each model from MIG model set and exe-
cution a loop of 10 repetitions for each model from fernandez model set.
Then, the average for the executions of each model was calculated, and
finally, all those averages for each model set were summed. Algorithms 5
and 7, the ones based on chunks, require an input value as the chunk size.
Given that both, Minibones and EDUCIBone use 100 as the default value
for the chunk size, our IPASIRBones programs have been also setup to use

same chunk size value by default.

68

Chapter 4: Experimental Validation

Table 4.5: Total times for the different algorithms and solvers (seconds)

algorithm solvername | MIG FA total
IPASIRBoNEs-1 | minisat220 2765 | 11911 | 14676
IPASIRBoNEs-1 | glucose4 3511 | 11270 | 14781
IPASIRBoNEs-1 | picosat961 4743 | 32889 | 37632
IPASIRBoNEs-1 | cadicalsc2020 368 | 42480 | 42848
IPASIRBoNEs-1 | lingelingbcj 7178 | 85980 | 93158
IPASIRBoNEs-2 | cadicalsc2020 | 4359 | 86384 | 90743
IPASIRBoNEs-2 | lingelingbc;j 6620 | 105937 | 112558
IPASIRBoNEs-2 | glucose4 3469 | 119817 | 123285
IPASIRBONES-2 | minisat220 3973 | 161067 | 165040
IPASIRBONEsS-2 | picosat961 10799 | 303131 | 313930
IPASIRBoNEs-3 | cadicalsc2020 233 1920 2153
IPASIRBoNEs-3 | glucose4 983 3629 4612
IPASIRBONES-3 | minisat220 916 4106 5022
IPASIRBoNEs-3 | lingelingbcj 2010 3790 5800
IPASIRBONES-3 | picosat961 2572 | 10273 | 12845
IPASIRBoNEs-3a | cadicalsc2020 235 1917 2153
IPASIRBoNEs-3a | glucose4 970 3529 4499
IPASIRBONES-3a | minisat220 919 4055 4974
IPASIRBoNEs-3a | lingelingbc;j 2020 3140 5161
IPASIRBONEs-3a | picosat961 2562 | 10226 | 12787
IPASIRBoNEs-4 | glucose4 3086 | 10441 | 13527
IPASIRBoNES-4 | minisat220 2892 | 11897 | 14789
IPASIRBONEsS-4 | picosat961 4670 | 20004 | 24674
IPASIRBoNEs-4 | cadicalsc2020 250 | 57965 | 58215
IPASIRBoNEs-4 | lingelingbc;j 7312 | 53045 | 60357
IPASIRBoNEs-5 | cadicalsc2020 259 2162 2421
IPASIRBoNEs-5 | glucose4 2162 5998 8160
IPASIRBONEsS-5 | minisat220 2236 7802 | 10037
IPASIRBoNEs-5 | lingelingbc;j 3567 8096 | 11664
IPASIRBONES-5 | picosat961 3522 | 12235 | 15757
IPASIRBoNEs-6 | lingelingbcj 2277 201 2478
IPASIRBoNEs-6 | cadicalsc2020 259 3056 3314
IPASIRBONEsS-6 | minisat220 994 4515 5508
IPASIRBoNEs-6 | glucose4 1338 6436 7774
IPASIRBoNES-6 | picosat961 2653 | 11330 | 13983
IPASIRBoNEs-7 | cadicalsc2020 233 1793 2026
IPASIRBoNEs-7 | glucose4 1450 4065 5515
IPASIRBONEsS-7 | minisat220 1447 4672 6119
IPASIRBoNEs-7 | lingelingbc;j 2604 4098 6702
IPASIRBONES-7 | picosat961 2898 | 10021 | 12919
IPASIRBoNEs-7a | cadicalsc2020 235 1760 1995
IPASIRBoNEs-7a | glucose4 1460 3967 5427
IPASIRBONES-7a | minisat220 1451 4769 6220
IPASIRBoNEs-7a | lingelingbcj 2625 3923 6548
IPASIRBONES-7a | picosat961 2927 9957 | 12884

4.3 RQ2: IPASIRBONES vs. state-of-the-art tools 69

Visualizations resulting from this experimental evaluation are shown
in Figure 4.21 and 4.22.

A visual inspection of these two plots unveils a similar pattern to the
ones seen for the IPASIRBoNEs programs: time evolution for the MIG set
(with the number of variables ranging from 1100 to 1400), is mostly flat
or slightly increasing, except for a reduced number of models, apparently
harder than the others. In relationship to the FA model set, EDUCIBone
shows the same exponential increase pattern as seen in the IPASIRBoNES
programs but, on the other side minibones is able to manage a high number
of variables with a small linear increase pattern instead of an exponential

time increase.

Other tools — SAT performance comparison for mig model set. Variables.
116 models.100 loops

0.20-

solvername
EDUCIBone

0.10- ~— minibones

Time (seconds)

—_— N e

1200 1250 1300 1350 1400
Number of variables

Figure 4.21: Other tools - Time vs. variables for MIG

Figure 4.6 provides the total computing time for these tools, in sec-

onds. Minibones can be clearly identified as the best performer backbone

70 Chapter 4: Experimental Validation

Other tools — SAT performance comparison for fernandez model set. Variables.
10 models.10 loops

200~

solvername
EDUCIBone

—— minibones

Time (seconds)

0 50000 100000 150000
Number of variables

Figure 4.22: Other tools - Time vs. variables for FA

Table 4.6: Other tools performance (seconds)

Backbone tool | MIG set | FA set | Total
EDUCIBone 892 | 3391 | 4283
minibones 262 1251 | 1513

computation tool. Although some IPASIRBONES programs provide better
performance for the MIG model set than the minibones tool, overall all
other tools except minibones do not perform so well on very big mod-
els. EDUCIBone times are far from minibones and the best ipasirbones

algorithms-solver combinations.

Figure 4.7 shows the final ranking, reflecting the facts discussed above,
with minibones at the top, followed by most IPASIRBoNES programs and

EDUCIBone. The list ends with the worst IPASIRBoNES programs (the ones

4.3 RQ2: IPASIRBONES vs. state-of-the-art tools

based on IPASIRBonEs-4, IPASIRBoNEs] and IPASIRBoNES-2).

Table 4.7: Final performance comparison table (seconds)

Solver name MIG set | FA set | Total
minibones 262 1251 1513
IPASIRBoNEs-7a-cadicalsc2020 235 1760 1995
IPASIRBoNES-7-cadicalsc2020 233 | 1793 | 2026
IPASIRBoNEs-3-cadicalsc2020 233 1920 2153
IPASIRBoNEs-3a-cadicalsc2020 235 1917 | 2153
IPASIRBoNESs-5-cadicalsc2020 259 | 2162 | 2421
IPASIRBoNEs-6-cadicalsc2020 259 | 3056 | 3314
EDUCIBone 892 | 3391 | 4283
IPASIRBoNES-4-glucose4 3086 | 10441 | 13527
IPASIRBoNES-1-minisat220 2765 | 11911 | 14676
IPASIRBoNEs-2-cadicalsc2020 4359 | 86384 | 90743

72

Chapter 4: Experimental Validation

Chapter 5: Conclusions and Future Work

5.1 Conclusions

Our work has provided IPASIRBonEs, an IPASIR-based implementation of
diverse algorithms to incrementally compute the backbone of propositional
formulas, which may encode configuration or any other kind of model. As
shown in Chapter 1, backbones are what in the software product line liter-
ature is called the core and the dead features of a configuration model. As
our implementation works incrementally, processing the model can con-
tinue after the backbone has been computed, for example by adding new
clauses to the formula or new assumptions. This makes this approach suit-
able for interactive solutions or being embedded into other applications.

Thanks to the IPASIR interface, IPASIRBoNES can take advantage of any
SAT-solver that complies with the standard. So if a new SAT-solver is de-
signed and the interface is provided, any application previously developed
can be linked to that new SAT-solver without requiring re-coding.

The reported experimental validation identifies the best-performing
configurations of IPASIRBonEs (underlying algorithm + SAT-solver) and
compared them to two state-of-the-art backbone computing tools. The re-
sults show that IPASIRBoNEs performs better than EDUCIBone, but mini-

bones still beats IPASIRBoNEs in huge industrial models.

74 Chapter 5: Conclusions and Future Work

5.2 Future Work

We envision two main lines of future work:

* IPASIRBoNESs has been tested with the most relevant IPASIR-compati-
ble SAT-solvers. Nevertheless, there are many other SAT-solvers that
can be adapted to use this interface. In addition, every year new
solvers are submitted to SAT competitions, which are a source of
new developments. Some other SAT-solvers have native parallel ca-
pabilities, and none have been used here. Regardless of new solvers,
backbone computation algorithms and heuristics can be improved.

* JPASIR-based implementations are well suited, not only to be used
in providing back-end support for visual feature modeling tools, but
also to be used to automate feature modeling tasks in general. In par-
ticular, future work can be directed toward managing the tasks fol-
lowing the identification of those core and dead features, like check-
ing new features and their dependencies or conflicts while still using

the same solver instance used for the backbone.

References

[Alyahya et al., 2022] Alyahya, T. N., Menai, M. E. B., and Mathkour, H.
(2022). On the structure of the boolean satisfiability problem: A survey.
ACM Comput. Surv., 55(3).

[Audemard and Simon, 2017] Audemard, G. and Simon, L. (2017). Glu-
cose and syrup in the sat’17. Proceedings of SAT Competition 2017, pages
16-17.

[Balyo, 2017] Balyo, T. (2017). IPASIR: The Standard Interface for Incre-
mental Satisfiability Solving. https://github.com/biotomas/ipasir.

[Balyo et al., 2016] Balyo, T., Biere, A., Iser, M., and Sinz, C. (2016). SAT
Race 2015. Artificial Intelligence, 241:45-65.

[Balyo et al., 2020] Balyo, T., Froleyks, N., Heule, M., Iser, M., Jarvisalo,
M., and Suda, M., editors (2020). Proceedings of SAT Competition 2020:
Solver and Benchmark Descriptions. Department of Computer Science,
University of Helsinki, Finland.

[Batory, 2005] Batory, D. (2005). Feature models, grammars, and propo-
sitional formulas. In Obbink, H. and Pohl, K., editors, Software Product
Lines, pages 7-20, Berlin, Heidelberg. Springer Berlin Heidelberg.

[Biere, 2008] Biere, A. (2008). Picosat essentials. Journal on Satisfiability,
Boolean Modeling and Computation (JSAT), 4:75-97.

[Biere, 2014] Biere, A. (2014). Lingeling essentials, a tutorial on design
and implementation aspects of the the sat solver lingeling. In Berre,
D. L., editor, POS-14. Fifth Pragmatics of SAT workshop, volume 27 of
EPiC Series in Computing, page 88. EasyChair.

https://github.com/biotomas/ipasir

76 References

[Biere et al., 2020] Biere, A., Fazekas, K., Fleury, M., and Heisinger, M.
(2020). CaDiCaL, Kissat, Paracooba, Plingeling and Treengeling enter-
ing the SAT Competition 2020. In Balyo, T., Froleyks, N., Heule, M.,
Iser, M., Jarvisalo, M., and Suda, M., editors, Proc. of SAT Competition
2020 — Solver and Benchmark Descriptions, volume B-2020-1, pages 51—
53. University of Helsinki.

[Davis et al., 1962] Davis, M., Logemann, G., and Loveland, D. (1962). A
machine program for theorem-proving. Commun. ACM, 5(7):394-397.

[Davis and Putnam, 1960] Davis, M. and Putnam, H. (1960). A comput-
ing procedure for quantification theory. J. ACM, 7(3):201-215.

[Eén and Sorensson, 2004] Eén, N. and Sorensson, N. (2004). An extensi-
ble sat-solver. In Giunchiglia, E. and Tacchella, A., editors, Theory and
Applications of Satisfiability Testing, pages 502-518, Berlin, Heidelberg.
Springer Berlin Heidelberg.

[Fernandez-Amoros et al., 2023] Fernandez-Amoros, D., Heradio, R.,
Mayr-Dorn, C., and Egyed, A. (2023). Scalable sampling of highly-
configurable systems: Generating random instances of the linux kernel.
In Proceedings of the 37th IEEE/ACM International Conference on Auto-
mated Software Engineering, ASE '22, New York, NY, USA. Association
for Computing Machinery.

[Guo et al., 2019] Guo, S., He, J., Song, X., and Liu, W. (2019). Backbone
solving algorithm based on heuristic thinking. In Proceedings of the
3rd International Conference on Machine Learning and Soft Computing,
ICMLSC 2019, page 44-48, New York, NY, USA. Association for Com-
puting Machinery.

[Janota, 2010] Janota, M. (2010). SAT solving in interactive configuration.
Ph.D. dissertation, University College Dublin.

[Janota et al., 2012] Janota, M., Lynce, 1., and Marques-Silva, J. (2012).
Experimental analysis of backbone computation algorithms. In Inter-
national Workshop on Experimental Evaluation of Algorithms for solving
problems with combinatorial explosion (RCRA), pages 15-20.

[Janota et al., 2015] Janota, M., Lynce, 1., and Marques-Silva, J. (2015). Al-
gorithms for computing backbones of propositional formulae. AI Com-
munications, 28(2):161 — 177.

REFERENCES 77

[Kilby et al., 2005] Kilby, P., Slaney, J. K., Thiébaux, S., and Walsh, T.
(2005). Backbones and backdoors in satisfiability. In Veloso, M. M. and
Kambhampati, S., editors, Proceedings, The Twentieth National Confer-
ence on Artificial Intelligence and the Seventeenth Innovative Applications
of Artificial Intelligence Conference, July 9-13, 2005, Pittsburgh, Pennsyl-
vania, USA, pages 1368-1373. AAAI Press / The MIT Press.

[Krieter et al., 2021] Krieter, S., Arens, R., Nieke, M., Sundermann, C.,
Hefs, T., Thum, T., and Seidl, C. (2021). Incremental construction of
modal implication graphs for evolving feature models. In 25th ACM In-
ternational Systems and Software Product Line Conference (SPLC), pages
64-74, Leicester, United Kingdom.

[Krieter et al., 2018] Krieter, S., Thim, T., Schulze, S., Schroter, R., and
Saake, G. (2018). Propagating configuration decisions with modal im-

plication graphs. In 40th International Conference on Software Engineer-
ing (ICSE), pages 898-909, Gothenburg, Sweden.

[Kroer, 2012] Kroer, C. (2012). SAT and SMT-based interactive configura-
tion for container vessel stowage planning. Master’s Thesis, IT University
of Copenhagen.

[Liang et al., 2020] Liang, T., Wang, X., Wang, S., and Wang, X. (2020).
An improved ID3 classification algorithm for solving the backbone of
proposition formulae. In 2020 IEEE Intl Conf on Dependable, Autonomic
and Secure Computing, pages 386-391.

[Mannion, 2002] Mannion, M. (2002). Using first-order logic for product
line model validation. In Proceedings of the Second International Confer-
ence on Software Product Lines, SPLC 2, page 176-187, Berlin, Heidel-
berg. Springer-Verlag.

[Marques-Silva et al., 2010] Marques-Silva, J., Janota, M., and Lynce, I.
(2010). On computing backbones of propositional theories. Frontiers
in Artificial Intelligence and Applications, 215:15 — 20.

[Marques-Silva et al., 2021] Marques-Silva, J., Lynce, 1., and Malik, S.
(2021). Conflict-driven clause learning sat solvers. In Handbook of Sat-
isfiability.

[Mitchell, 2005] Mitchell, D. (2005). A sat solver primer. Bulletin of the
EATCS, 85:112-132.

78 References

[Monasson et al., 1999] Monasson, R., Zecchina, R., Kirkpatrick, S., Sel-
man, B., and Troyansky, L. (1999). Determining computational com-
plexity from characteristic ‘phase transitions’. Nature, 400:133-137.

[Perez-Morago et al., 2015] Perez-Morago, H., Heradio, R., Fernandez-
Amoros, D., Bean, R., and Cerrada, C. (2015). Efficient identification
of core and dead features in variability models. IEEE Access, 3:2333—
2340.

[Plazar et al., 2019] Plazar, Q., Acher, M., Perrouin, G., Devroey, X., and
Cordy, M. (2019). Uniform sampling of sat solutions for configurable
systems: Are we there yet? In Proceedings - 2019 IEEE 12th International
Conference on Software Testing, Verification and Validation, ICST 2019.

[Previti et al., 2017] Previti, A., Ignatiev, A., Jarvisalo, M., and Marques-
Silva, J. (2017). On computing generalized backbones. In 2017 IEEE
29th International Conference on Tools with Artificial Intelligence (ICTAI),
pages 1050-1056, Los Alamitos, CA, USA. IEEE Computer Society.

[Previti and Jarvisalo, 2018] Previti, A. and Jarvisalo, M. (2018). A
preference-based approach to backbone computation with application
to argumentation. In Proceedings of the 33rd Annual ACM Symposium on
Applied Computing, SAC ’18, page 896-902, New York, NY, USA. Asso-
ciation for Computing Machinery.

[Quinlan, 1986] Quinlan, J. R. (1986). Induction of decision trees. Ma-
chine Learning, 1:81-106.

[SAT Challenge, 1993] SAT Challenge (1993). Satisfiability suggested for-
mat. Rutgers University.

[Wu, 2017] Wu, H. (2017). Improving sat-solving with machine learn-
ing. In Proceedings of the 2017 ACM SIGCSE Technical Symposium on
Computer Science Education, SIGCSE 17, page 787-788, New York, NY,
USA. Association for Computing Machinery.

[Zhang et al., 2020] Zhang, Y., Zhang, M., and Pu, G. (2020). Optimizing
backbone filtering. Science of Computer Programming, 187:102374.

[Zhang et al., 2018] Zhang, Y., Zhang, M., Pu, G., Song, F,, Li, J., Fontaine,
P., Kaliszyk, C., Schulz, S., and Urban, J. (2018). Towards back-
bone computing: A greedy-whitening based approach. AI Commun.,
31(3):267-280.

REFERENCES 79

[Zhu et al., 2011] Zhu, C. S., Weissenbacher, G., and Malik, S. (2011).
Post-silicon fault localisation using maximum satisfiability and back-
bones. In 2011 Formal Methods in Computer-Aided Design (FMCAD),
pages 63-66.

	List of tables
	List of figures
	Chapter 1: Introduction
	Objective
	Concepts and Definitions
	Document Structure

	Chapter 2: Related Work
	Feature Models and SAT-solvers
	IPASIR
	Backbones
	Applications of backbones

	Chapter 3: Computing Backbones
	Backbone computation using IPASIR
	Algorithm 1: Enumeration-based
	Algorithm 2: Iterative testing - Two tests pervariable
	Algorithm 3: Iterative testing - One test per variable
	Algorithm 4: Iterative algorithm with the complement of backbone estimate
	Algorithm 5: Chunking
	Algorthm 6: Core-based Algorithm
	Algorthm 7: Core-based Algorithm with Chunking

	Heuristics
	Insertion of the backbone into the formula
	Literal filtering
	Identification of one-literal clauses
	Cascading CNF literals
	Coding and performance

	Tweaking the Algorithms
	Enhancing Algorithm 3 - Version a
	Enhancing Algorithm 7 - Version a

	Chapter 4: Experimental Validation
	Experimental Setup
	RQ1: Best IPASIRBones/SAT combination
	IPASIRBones-1
	IPASIRBones-2
	IPASIRBones-3
	IPASIRBones-4
	IPASIRBones-5
	IPASIRBones-6
	IPASIRBones-7
	Enhanced Algorithms: IPASIRBones-3a&7a
	Conclusions on individual algorithms

	RQ2: IPASIRBones vs. state-of-the-art tools

	Chapter 5: Conclusions and Future Work
	Conclusions
	Future Work

	References

