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Resumen

Los sistemas de software son cada vez más configurables. Un claro ejem-
plo es el Kernel de Linux, que puede adaptarse a una extraordinaria var-
iedad de dispositivos de hardware (teléfonos inteligentes, computadoras
portátiles, clústeres de computadoras, etc.) gracias a las miles de carac-
terísticas configurables que admite.

Un problema central en el análisis de este tipo de sistema altamente
configurable es la detección automática de características esenciales e in-
activas. Las características esenciales son aquellas que deben incluirse en
cada configuración. Por el contrario, las características muertas son aquel-
las que, debido a sus incompatibilidades con otras funciones, no se pueden
activar en ninguna configuración y, por lo tanto, deben eliminarse durante
el mantenimiento del sistema.

En la literatura de ingeniería de software, y particularmente en el área
de las línea de productos software, las características esenciales y muer-
tas se identifican típicamente llamando masivamente a un SAT-solver para
analizar una fórmula proposicional que codifica el modelo configurable.
En la medida de nuestro conocimiento, esta tesis es el primer trabajo que
establece una conexión entre las características centrales/muertas y el back-
bone de las fórmulas proposicionales, mostrando su total equivalencia.
Gracias a esta equivalencia, esta tesis proporciona una implementación
funcional de varios algoritmos de última generación para la detección de
backbones y prueba su notable escalabilidad para detectar características
esenciales y muertas en modelos configurables.

Nuestra implementación se basa en la interfaz IPASIR, que es una forma
estándar de interactuar con los SAT-solvers de forma incremental. De esta
manera, nuestro código se desacopla de cualquier solucionador SAT-solver
específico (es decir, funciona con cualquier solucionador que implemente
el estándar)

Palabras clave: SAT solver, característica esencial, característica muerta,
backbone, IPASIR, minibones, EDUCIBone, modelo de configuración.
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Abstract

Software systems are becoming increasingly configurable. A clear exam-
ple is the Linux Kernel, which can be adapted for an extraordinary va-
riety of hardware devices (smartphones, laptops, computer clusters, etc.)
thanks to the thousands of configurable features it supports.

One central problem in analyzing this kind of highly configurable sys-
tem is the automated detection of core and dead features. Core features are
those that must be included in every configuration and thus are entirely
essential. In contrast, dead features are those that, because of their incom-
patibilities with other features, cannot be activated in any configuration
and thus should be removed during the system maintenance.

In the software engineering literature, and particularly in the software
product line field, core and dead features are typically identified by calling
a SAT-solver massively to analyze a propositional formula that encodes the
configurable model. To the extent of our knowledge, this thesis is the first
work that makes a connection between core/dead features and the back-
bone of propositional formulas, showing their total equivalence. Thanks
to this equivalence, this thesis provides the functional implementation of
several state-of-the-art algorithms for detecting backbones, and tests their
remarkable scalability to detect core and dead features in configurable
models.

Our implementation is based on the IPASIR interface, which is a stan-
dard way to interact with SAT-solvers incrementally. This way, our code is
decoupled from any specific SAT-solver (i.e., it works with any solver that
implements the standard).

Keywords: SATsolver, dead feature, core feature, variability model,
configuration model, backbone, IPASIR, minibones, EDUCIBone.
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1
Chapter 1: Introduction

The number of highly configurable software systems is increasing. A very

illustrative example is the Linux Kernel, which can be configured for an

immense variety of hardware devices thanks to the existing thousands of

configurable features it currently supports and the capacity to add new

ones. Devices supported by some kind of Linux distribution range from

smartphones, desktop or laptop computers, and even 100% of the top-500

most powerful supercomputers. These software systems evolve over time,

and new features are added to the feature base, so they can be selected or

deselected to produce a final configuration. This evolution leads to inter-

mediate scenarios where some features are mandatory (also known as core

features) and some other features became obsolete or incompatible and,

therefore, can not be chosen (dead features). Once these core and dead fea-

tures have been identified, software engineers can continue selecting and

deselecting additional features into the desired configuration. Note this

process is incremental and, most times bidirectional: the designer might

choose to add a new feature and observe that feature, in turn, will require

other features to be selected or even be deselected due to incompatibilities.

Managing this process when the number of features is small (Figure

1.1, taken from [Krieter et al., 2021]), is a tractable problem, but for highly
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configurable systems (the Linux Kernel has more than 13,000 features),

the problem becomes intractable.

Figure 1.1: An example of feature model taken from [Krieter et al., 2021]

Efficiently identifying those core and dead features while working with

a configuration model, either as a background task or in an interactive set-

ting is an active research stream. There are several lines of research (refer

to Chapter 2), some of them are: Binary Decision Diagrams (BDD), Strong

Dependencies, SAT-solvers, every one with its own highlights and defi-

ciencies.

[Batory, 2005] showed the equivalence between feature models and

propositional logic, which supports the automated analysis of models us-

ing SAT-solver. A SAT-solver can be called with a particular configuration

and it will return satisfiable if the configuration is valid, and unsatisfiable if

the configuration is not valid. But, before starting with the configuration

model, it is key to know which ones are the core and the dead features in

order to set them and avoid starting with an invalid configuration. Once

that initial configuration has been set, more features can be incrementally
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selected or deselected in an interactive way.

The problem described is not uniquely applicable to the Linux Kernel.

Other highly configurable software systems in areas like automotive, fi-

nancial systems, software testing, and chip testing also experience it (refer

to [Krieter et al., 2021] and section 2.3.1).

1.1 Objective

Within this work, we take abstract algorithms available in previous lit-

erature and produce an equivalent implementation based on the IPASIR

incremental interface, which allows not only a first identification of the

dead and core features but also further addition of rules and whatever

feature assumptions (selected/deselected) in an incremental and efficient

way. We call our implementation IPASIRBones.

Then, the two following research questions will be answered:

• RQ1: What is the best IPASIRBones and SAT combination implemen-

tation?

• RQ2: How IPASIRBones performs when compared to state-of-the-art

tools?

We believe IPASIRBones will help in creating new solutions for interac-

tive model configuration.

1.2 Concepts and Definitions

This section provides some concepts and definitions, which will be used

in the following chapters.
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Definition (Boolean variable). A Boolean variable x has two possible

values: True or False.

Definition (Literal). A literal can be either a Boolean variable x (posi-

tive literal) or its negation x (negative literal.

Hence, we will denote the set of Boolean variables by X = {x1,x2, ...,xn}

and the set of literals over X as L = {xi ,xi |xi ∈ X,1 ≤ i ≤ n}

Note that most implementations of Boolean literals represent them as

xi for the True assignment and −xi for the False assignment of variable xi .

Definition (Clause). A clause is a disjunction (or = ∨ ) of literals.

Definition (CNF-Formula). A formula ψ is in Conjunctive Normal

Form (CNF) when it is expressed as a conjunction (and = ∧) of clauses.

Definition (Assignment). Given a CNF formula ψ over a set of vari-

ables X, an assignment is a mapping from each variable xi to {True,

False}.

Definition (Satisfiable Formula). Given a CNF formula ψ over a set

of variables X, ψ is satisfiable if and only if, for each variable xi , there

exists an assignment that makes formula ψ True. If every possible variable

assignment makes the formula False, then formula ψ is unsatisfiable

Definition (Backbone). There are several definitions of the backbone

of a satisfiable formula, but the most generally used is the one by [Kilby

et al., 2005]: The backbone of a propositional formula is the set of literals

which are true in every satisfying truth assignment. An alternative definition

by [Janota et al., 2015] defines the backbone as the set of necessary assign-

ments: If a literal l is in the backbone of ψ, any assignment satisfying ψ must

set l to true.
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Definition (Core Literal). Given a literal xi from the backbone of the

formula ψ, xi is a Core Literal if the assignment satisfying formula ψ is xi .

Definition (Dead Literal). Given a literal xi from the backbone of the

formula ψ, xi is a Dead Literal if the assignment satisfying formula ψ is xi .

Definition (Feature Model). A feature model [Batory, 2005] is a hier-

archically arranged set of features. Relationships between apparent (or

compound) features and their child features (or subfeatures) are catego-

rized as:

• And — all subfeatures must be selected,

• Alternative — only one subfeature can be selected,

• Or — one or more can be selected,

• Mandatory — features that required, and

• Optional — features that are optional

Feature models, in turn, can be translated into propositional formulas

[Mannion, 2002] and this connection allows us to use satisfiability solvers

or SAT-solvers

CNF-Formulas (Feature Models, Models) are typically stored in a stan-

dard format created by the Center for Discrete Mathematics and Theoret-

ical Computer Science, called DIMACS [SAT Challenge, 1993]. DIMACs

are textual files with the following types of lines:

• Comment lines: These lines start with a lowercase "c" and can con-

tain any informative text, which is expected to be ignored by any

program reading the file.

• Problem line: This line starts with a lowercase "p" character and has

the format:
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p FORMAT NUM_VARIABLES NUM_CLAUSES

where FORMAT must be "CNF", a confirmation that following lines

encode a cnf formula, NUM_VARIABLES is the number of variables of

the formula described and NUM_CLAUSES is the number of clauses of

the formula.

• Clause lines: Must be placed after the problem line. The format is

as follows:

– Every literal is represented by its variable number, with a neg-

ative sign in case of a negated literal.

– A clause is a sequence of literals, separated by spaces and ended

with a 0.

– A formula is a sequence of clauses.

– There are no restrictions to line splitting. A clause can be split

in multiple lines, provided that it is properly ended with a 0.

On the other side, multiple formulas can be stored, separated

by 0, in a single line.

As an example, given the formula from [Perez-Morago et al., 2015]:

ψ = (x1 ∨ x2 ∨ x3 ∨ x4 ∨ x5 ∨ x6)∧ (x2 ∨ x3)∧ (x3 ∨ x1)∧ (x4 ∨ x3)∧

(x5 ∨ x3)∧ (x6 ∨ x3)∧ (x1 ∨ x2)∧ (x4 ∨ x5)∧ (x4 ∨ x6)

The corresponding DIMACS file is listed in Listing 1.1.
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Listing 1.1: Example DIMACS file
1 c This is the CNF corresponding to the example from Perez-Morago 2015 article

2 c f1 is a core feature - included in every derivative

3 c f2 is a dead feature - missing in every derivative

4 p cnf 6 9

5 1 2 3 4 5 6 0

6 -2 3 0

7 1 -3 0

8 3 -4 0

9 3 -5 0

10 3 -6 0

11 -1 -2 0

12 -4 -5 0

13 -4 -6 0

1.3 Document Structure

The rest of this document is structured as follows: Chapter 2 reviews lit-

erature relevant to this work related to feature models, SAT-solvers, back-

bones and IPASIR, including a brief introduction to its interface. Chap-

ter 3 describes the main contribution of our work: an IPASIR-based im-

plementation of diverse algorithms to compute the backbone of propo-

sitional formulas. Chapter 4, reports an in-depth empirical evaluation of

our IPASIR programs presented in Chapter 3, ending with a comparison to

other state-of-the-art solvers. Finally, Chapter 5 outlines the conclusions

and suggest future work.
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2
Chapter 2: Related Work

This chapter reviews academic literature related to the subject discussed

in the following chapters: Feature Models, SAT-solvers and backbones.

2.1 Feature Models and SAT-solvers

Batory’s seminal paper [Batory, 2005] showed the equivalence between

feature models and propositional logic, which supports the automated

analysis of models using SAT-solvers. This paper has originated fruitful

literature on how to solve variated feature models’ problems employing

SAT-solvers.

SAT solving literature can be traced back to [Davis and Putnam, 1960],

often named as DP procedure, and its extension [Davis et al., 1962], named

DPLL procedure, as the first SAT-solvers. Modern SAT-solvers include ad-

ditional heuristics to the DPLL procedure and some others are based on

conflict-driven clause learning (CDCL) [Marques-Silva et al., 2021].

Eventually, SAT solving became an active research area, with SAT Com-

petitions1 organized bi-yearly or yearly since 2002, usually as a satellite

event to the SAT Conference (International Conference on Theory and Ap-

1http://www.satcompetition.org/
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plications of Satisfiability Testing) have produced, over the years new al-

gorithms and better heuristics and implementation techniques.

On more advanced topics, [Alyahya et al., 2022] analyzes existing SAT-

solvers’ literature, looking into underlying structural measures such as

backbones, backdoors and others which might help in defining SAT struc-

ture.

There are other authors that make different proposals on feature mod-

eling. [Krieter et al., 2021] uses implication graphs instead of a SAT-solver

within FeatureIDE, a feature-oriented software development framework.

2.2 IPASIR

IPASIR, is the reverse acronym for “Re-entrant Incremental Satisfiability

Application Program Interface" [Balyo, 2017], was first presented at the

2015 SAT race [Balyo et al., 2016] to unify the interface for the different

incremental SAT-solvers, and since then it has been a competition track

for each following SAT competition.

Some SAT-solvers with IPASIR interface are Picosat [Biere, 2008], Lin-

geling [Biere, 2014], Cadical [Biere et al., 2020], Minisat [Eén and Sörens-

son, 2004] and Glucose [Audemard and Simon, 2017] which is based on

Minisat.

IPASIR aims to provide a universal SAT-solver interface, which can be

easily implemented by every SAT-solver and used to build applications

in every domain without knowing the underlying implementation of each

solver and allowing changing the solver used in the application at compile

time without any change in code.
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IPASIR interface is composed of the nine functions in Listing 2.1.

Listing 2.1: IPASIR Interface
1 const char *ipasir\_signature();

2 // Returns solver name and version

3 void *ipasir\_init();

4 // Initiliazes solver instance and returns a pointer to it

5 void ipasir\_release(void *solver);

6 // Releases (Destroys) the solver instance

7 void ipasir_set_terminate(void *solver, void *state,

8 int(*terminate) (void *state));

9 // Sets a call-back function for aborting solving process when required

10 void ipasir_add(void *solver, int lit_or_zero);

11 // Adds a literal to the current clause or finalize it

12 void ipasir_assume(void *solver, int lit);

13 // Assumes a literal for the next solver call

14 int ipasir_solve(void *solver);

15 // Solves the formula and returns:

16 // 10 if SATisfiable, 20 if UNSATisfiable

17 int ipasir_val(void *solver, int lit);

18 // Retrieves a variable truth value (SAT case)

19 int ipasir_failed(void *solver, int lit);

20 // Checks for a failed assumption (UNSAT case)

As IPASIR is central for our work, an example of how to use it is pro-

vided in Listing 2.2. This example uses the CNF formula in Listing 1.1 as

input. Lines 1-3 link the ipasir.h interface to the current program, and

Line 4 prints the solver name (e.g. "minisat220"). Then, Line 6 returns

a pointer to the solver instance newly created. Lines 9-11 show how to

add the literals of the clause in Line 12 from 1.1 to the formula in the

solver: each literal is added with a call to ipasir_add and, when all liter-

als from the clause are added, the clause is added to the formula by calling

ipasir_add with a 0 value. Lines 13-15 repeat the same process for the

clause in Line 13. This process is intended to be done with a loop or a

function reading those values from the DIMACS file.

Suppose that our program has properly added all literals and clauses

from 1.1, the call to ipasir_solve in Line 18 will return 102 in the res

variable since the formula is satisfiable. Line 22 makes the temporary

2ipasir_solve returns 10 or 20, meaning SAT or UNSAT, respectively.
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assumption that variable x1 takes the -1 value (i.e., false). In this case,

the new call to ipasir_solve in Line 23 will now return 20 in the res

variable as the formula is unsatisfiable under the assumption that vari-

able x1 takes the literal -1. If the solver returns the UNSAT state, then

it can be queried to confirm which assumption variable caused this state.

A call to ipasir_failed, asking about variable x1, will return 1, mean-

ing that the previous assumption caused SAT-solver to move into UNSAT.

Note that ipasir_failed can be only called when the solver is in UNSAT

state, and only the variables used in previous calls to ipasir_assume can

be queried. If the assumed literal does not make the formula unsatisfiable,

ipasir_failed returns 0.

Listing 2.2: IPASIR Interface example
1 extern "C" {

2 #include "ipasir.h"

3 }

4 printf("c Solver: %s\n", ipasir_signature());

5
6 void *solver = ipasir_init();

7
8 // Omitted adding clauses in Lines 5 to 11

9 ipasir_add(solver, -4);

10 ipasir_add(solver, -5);

11 ipasir_add(solver, 0);

12
13 ipasir_add(solver, -4);

14 ipasir_add(solver, -6);

15 ipasir_add(solver, 0);

16
17 // This call to solve will return 10 (SAT)

18 res=ipasir_solve(solver);

19
20 // Assuming variable x1 takes literal value -1

21 // Now solve call will return 20 (UNSAT)

22 ipasir_assume(solver, -1);

23 res= ipasir_solve(solver);

24 failed = ipasir_failed(solver, 1);

25
26 // This new assumption is SAT

27 ipasir_assume(solver, -2);

28 res= ipasir_solve(solver);

After any satisfiable call to ipasir_solver, the solver internally stores

a solution that satisfies the assumptions and formula in the state at the
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time of the call. This solution can be queried by calling to ipasir_val(

solver, lit), with the number of the desired variable and function will

return lit if the satisfying literal is True and -lit if the satisfying literal

is False. The IPASIR documentation states that the function may return

0 if the found assignment is satisfying for both valuations of lit. Note

that lit argument name in the function call can be misleading as it is a

positive integer between 1 and the number of variables,

Assumptions are temporal and automatically cleared after any call to

ipasir_solve. In fact, after making the assumption that variable x2 takes

the literal -2 (Line 27), the call to ipasir_solve in Line 28 will return

10 (Satisfiable), without being interfered with by the assumption made

before the previous solver call (Lines 22 and 23).

New clauses can be added at any time, in the same way as done above

(Lines 9 -11 and 13-15) and, unlike assumption variables, they are perma-

nent during the solver instance lifetime.

2.3 Backbones

While there are several definitions of the backbone of a satisfiable SAT

problem, the most generally used is the one by [Kilby et al., 2005] (refer

to Section 1.2).

But the backbone term was first defined and some of its properties

were enumerated at [Monasson et al., 1999] while experimenting on ran-

dom k-CNF instances. In a recent survey, [Alyahya et al., 2022] provides

an overview of structural measures related to the Satisfiability Problem,

like the backbone size, strong backdoor size, weak backdoor size, fre-
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quency of variables in a weak backdoor, LS backdoor size, LSR backdoor

size, and backbone/backdoor variable overlap, by using models ranging

from random, crafted, and industrial benchmarks, but the evidence was

inconclusive in relation to the backbone.

There have been many attempts to use innovative solutions for obtain-

ing the backbone of a formula. For example, [Guo et al., 2019] uses a

heuristic backbone algorithm which provides significant time improve-

ment when compared to the one test per time algorithm.

A different approach is followed by [Perez-Morago et al., 2015], by us-

ing a Binary Decision Diagram (BDD) instead of using a SAT-solver to

identify features of the product platform which must part of every deriva-

tive and those to be excluded of it.

On the other side, other authors used machine learning techniques. For

example, [Wu, 2017] used a logistic regression model in conjunction with

a Monte-Carlo approach achieving an accuracy of 78 percent in identify-

ing backbones. Similarly, [Liang et al., 2020] applies ID3 machine learning

algorithm [Quinlan, 1986], reaching an accuracy of 75 percent or more,

while still resorting to a SAT-solver to complete the backbone. Fully solv-

ing the backbone variable based on ID3_algorithm is still an open prob-

lem.

[Previti et al., 2017] provides two generic algorithms to compute gener-

alized backbones, that is, formulas defined over-generalized domains, not

limited to Boolean values. Another proposal, with practical application

in bounded model checking, analysis of hardware circuits, static analysis,

and test generation is made by [Previti and Järvisalo, 2018].
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The most extensive and deepest work was done at [Janota et al., 2015],

as an extension of their previous work at [Marques-Silva et al., 2010] and

[Janota et al., 2012]. This work describes seven algorithms to calculate

backbones and different performance results, which were implemented in

the minibones tool and made available publicly.

EDUCIBone, presented at [Zhang et al., 2018], implements three strate-

gies, COV, WHIT, and 2LEN to improve backbone computing. Authors

claim that EDUCIBone requires 18% less runtime than minibones-cb10.

EDUCIBone and minibones, will be used later, during the Experimental

Evaluation (Chapter 4) to complete an extended performance evaluation

by comparing them with our best-performing programs based on IPASIR.

2.3.1 Applications of backbones

Some examples of backbone applications are the localization of faults in

silicon integrated circuits [Zhu et al., 2011], knowledge representation

and reasoning (KRR) [Previti and Järvisalo, 2018], vessel stowage [Kroer,

2012] and [Janota, 2010] for interactive model configuration.
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3
Chapter 3: Computing Backbones

This chapter describes the main contribution of our work: an IPASIR-

based implementation of diverse algorithms to compute the backbone of

propositional formulas (which may encode configuration or any other kind

of model). In Section 3.1, the seven algorithms described in [Janota et al.,

2015] are implemented with the IPASIR interface. These algorithms are

state-of-the-art in backbone computing. Section 3.2 proposes additional

heuristics to improve the backbone computation. Finally, Section 3.3 pro-

vides details about additional improvements. After describing each al-

gorithm’s pseudocode and our corresponding IPASIR implementation, an

execution sample will be provided using the buildroot.cnf configuration

model, taken from [Fernandez-Amoros et al., 2023]. The next Chapter 4

will report an in-depth performance analysis of all the algorithms.

3.1 Backbone computation using IPASIR

As described in Section 2.2, IPASIR is a C/C++ interface to create a uni-

form interface allowing developers to access compatible SAT-solvers with-

out requiring knowledge of their internal structure.

This section describes fully-functioning IPASIR implementations of seven
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backbone algorithms abstractly described in [Janota et al., 2015]. In con-

trast with dedicated backbone calculation tools, our implementation will

help integrate backbone calculation into other tools, such as interactive

configurators.

The “template” we used to write our code is genipabones.cpp, an im-

plementation available at [Balyo, 2017] of the algorithm in Section 3.1.2.

Our programs produce an output similar to other tools like minibones [Jan-

ota et al., 2015] and EDUCIBone [Zhang et al., 2020], but redirected to the

stderr stream to facilitate its ulterior processing. After the description

of each algorithm throughout this section, an execution sample will be

provided.

3.1.1 Algorithm 1: Enumeration-based

This algorithm enumerates all the implicants, one by one, and updates the

backbone in every iteration (Figure 3.1).

Algorithm 1: Enumeration-based backbone computation

Input : Satisfiable formula φ
Output: Backbone of φ, νR

1 νR ← {x | x ∈ var(φ)} ∪ {x̄ | x ∈ var(φ)} // Initial backbone upper bound

2 while νR 6= ∅ do
3 (outc, ν)← SAT(φ) // SAT solver call

4 if outc = false then
5 return νR // Terminate if no more implicants

6 νR ← νR ∩ ν // Update backbone estimate

// Block implicant

7 ωB ←
∨
l∈ν l̄

8 φ← φ ∪ ωB
9 assert(νR = ∅) // Backbone estimate became empty before enumeration finished

10 return νR

formula is both a necessary and a sufficient condition
for the implicant ν not to be found again.

In order to mitigate the size of blocking clauses, the
implicant returned by the SAT solver can be heuris-
tically reduced by standard techniques, e.g. variable
lifting [29]. We return to this topic in more detail in
Section 5.

It is interesting to observe that Algorithm 1 main-
tains a superset of the backbone, i.e. it maintains an
upper bound of the backbone (in terms of the subset
ordering).

4.2 Iterative SAT Testing

Enumerating implicants has its clear limitations since
the number of implicants is in the worst-case expo-
nential in the number of variables (cf. [4]). An alter-
native to enumerating implicants is to focus at each
literal separately and test whether it is a backbone
literal or not.

Proposition 3 shows that a literal is in the back-
bone iff SAT(φ ∪ {l̄}) is unsatisfiable. This observa-
tion allows us devising Algorithm 2. Observe that if
a literal is decided to be a backbone literal, then it
is correct to add it to the formula as a unit clause,
as shown in lines 8 and 11. This addition is not re-
quired for the correctness of the algorithm, but it is

expected to simplify the remaining SAT tests. The
worst case number of SAT tests for Algorithm 2 is
2× |var(φ)|.

Recall that a SAT solver not only tells us whether
the given formula is satisfiable or not, but it also
gives us an implicant of a satisfiable formula. Recall
also that any backbone literal must be in any impli-
cant (Proposition 1). This gives us an opportunity to
improve Algorithm 2. Once we obtain an implicant
from a SAT call, we do not have to test anymore any
of those literals that do not appear in the implicant.

This observation suggests a different organization,
corresponding to Algorithm 3. The algorithm main-
tains a set of literals Λ of those literals that still need
to be tested. The set is initialized by an implicant φ
obtained by a SAT call. Hence, when the loop starts,
the set Λ contains at most |var(φ)| literals. In each
iteration of the loop, the algorithm picks a literal l to
test and subsequently tests if l is in the backbone by
the call SAT(φ∪{ l̄ }). If l is in the backbone, φ∪{ l̄ }
is unsatisfiable and l is stowed in νR. If l is not in the
backbone, φ ∪ { l̄ } is satisfied by some implicant ν,
which is used to remove from Λ those literals that do
not appear in it. Observe that the tested literal l is
removed from Λ in line 12. This is because ν satisfies
φ ∪ { l̄ } and therefore l /∈ ν.

Algorithm 3 guarantees that the loop iterates at

5

Figure 3.1: Algorithm 1 - Enumeration-based backbone computation
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As a first step, it establishes the set of all literals as the initial backbone

upper bound (Line 1). Then a search is performed until that upper bound

is not empty, either because that literal was identified as a backbone mem-

ber or because that literal is not appearing in every SAT solution calculated

(the latter is the definition of the backbone). In every loop, a SAT-solver

call is performed, causing the loop to finish if that call is not satisfiable. If

the SAT call is satisfiable, the upper bound set is filtered to contain only

those literals which are also appearing in the new SAT solution returned.

As a performance aid and in order to prevent the algorithm to calculate an

implicant already found, it uses the blocking clause heuristics, by adding

it to the formula. A blocking clause for an implicate v is defined as the

clause
∨
l∈v l.

In our IPASIR implementation (Listing 3.1), the initial backbone up-

per bound is set as two arrays (Lines 1 and 2), one for positive and one

for negative literals. After every SAT call (Line 11), resulting SAT solution

literals are saved (Lines 19 to 21), used first negated to filter backbone up-

per bound (Lines 23 to 35) and then used to compute the block implicant

(Lines 37 to 43) to be added as a new clause to the formula. Literals from

the SAT solution must be saved to a temporary variable, since IPASIR (and

most SAT-solvers) cannot mix calls to ipasir_val (which will move SAT-

solver from either INPUT, SAT, or UNSAT to INPUT state) and calls to

ipasir_add (which require SAT-solver to be in SAT state)

The screenshot in Figure 3.2 shows the execution results of Algorithm

1 using buildroot.cnf model.
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Listing 3.1: IPASIRBones-1
1 int* pos_literals = new int[maxVar]; // upper bound - positive literals

2 int* neg_literals = new int[maxVar]; // upper bound - negative literals

3 for (int i=0; i<maxVar; i++) {

4 pos_literals[i] = i+1;

5 neg_literals[i] = -(i+1);

6 }

7 int vr_upper_count = 2 * maxVar;

8 int* sat_sol = new int[maxVar];

9
10 while (vr_upper_count != 0) {

11 res = ipasir_solve(solver);

12 satCalls++;

13 if (vr_upper_count != vr_cpy) {

14 vr_cpy = vr_upper_count;

15 }

16 if (res==UNSAT) {

17 break; // return VR upper_bound;

18 }

19 for (int lit=1; lit<=maxVar; lit++) {

20 sat_sol[lit-1] = ipasir_val(solver, lit);

21 }

22 // VR <- VR ^ v

23 for (int lit=1; lit<=maxVar; lit++) {

24 if (sat_sol[lit-1]>0) {

25 if (neg_literals[lit-1] != 0) {

26 neg_literals[lit-1] = 0;

27 vr_upper_count --;

28 }

29 } else if (sat_sol[lit-1]<0) {

30 if (pos_literals[lit-1] != 0) {

31 pos_literals[lit-1] = 0;

32 vr_upper_count --;

33 }

34 }

35 }

36 // now computing block implicant

37 for (int i=0; i<maxVar; i++) {

38 if (neg_literals[i] !=0)

39 ipasir_add(solver, -neg_literals[i]);

40 if (pos_literals[i] !=0)

41 ipasir_add(solver, -pos_literals[i]);

42 }

43 ipasir_add(solver, 0);

44 }

Figure 3.2: Running Algorithm 1 on buildroot.cnf
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3.1.2 Algorithm 2: Iterative testing - Two tests per

variable

This algorithm performs an iterative loop for all variables in the model,

checking in sequence both, the negative literal and the positive literal.

In every SAT call (Figure 3.3), an assumption, negating the literal under

evaluation is added to the current SAT stage. Once that SAT call is com-

pleted, those assumptions previously made are automatically cleared by

the SAT-solver. This algorithm performs a total of 2n sequential calls to

the SAT-solver, one for each literal of each variable. An additional perfor-

mance improvement heuristic consists in adding those backbones, after

they are found, as single literal clauses to the formula.

Algorithm 2: Iterative algorithm (two tests per variable)

Input : Satisfiable formula φ
Output: Backbone of φ, νR

1 νR ← ∅ // Initial backbone lower bound

2 foreach x ∈ var(φ) do
3 (outc1, ν)← SAT(φ ∪ {x})
4 (outc0, ν)← SAT(φ ∪ {x̄})
5 assert ( outc1 = true or outc0 = true ) // φ must be satisfiable

6 if outc1 = false then
7 νR ← νR ∪ {x̄} // x̄ is backbone

8 φ← φ ∪ {x̄}
9 if outc0 = false then

10 νR ← νR ∪ {x} // x is backbone

11 φ← φ ∪ {x}

12 return νR

most |var(φ)| times. Hence, the algorithm performs
at most |var(φ)|+ 1 SAT tests in total.

In contrast to the enumeration-based approach, Al-
gorithm 2 refines a subset of the backbone. In each
iteration of the algorithm, the set νR represents a
lower bound of the backbone. Algorithm 3 integrates
the two bounds, lower and upper, together. Even
though Algorithm 3 does not have an explicit repre-
sentation of the upper bound, it maintains its explicit
representation in the form Λ ∪ νR. When the algo-
rithm terminates, Λ becomes empty and νR consists
of all the backbone literals.

4.3 Integrating the Complemented
Backbone Estimate

An algorithm that complements the algorithms de-
scribed in the previous sections was recently proposed
in [37]. Although in practice this algorithm is less ef-
ficient than the algorithms described in the previous
section, namely Algorithm 3, it is guaranteed to re-
quire fewer SAT solver calls. Indeed, the algorithm
described in [37] is also based on iterative SAT test-
ing but only a single SAT solver call is required to
prove that the current backbone estimate is indeed
the backbone. This section studies this algorithm

and proposes optimizations targeting improved effi-
ciency.

Algorithm 4 shows the algorithm developed in [37].
In each iteration of the loop, a complement of the
backbone estimate is conjoined to the formula and
tested for satisfiability (line 4). If the formula is
satisfiable, then the computed implicant includes at
least one literal in the complement of the backbone
estimate. Hence, the backbone estimate is refined
(line 7). The process is repeated until the backbone
estimate represents the actual backbone, in which
case the formula is unsatisfiable.

Proposition 5. Let |BB| denote the backbone size.
Then, the number of SAT tests in Algorithm 4 is at
most (|var(φ)|−max(|BB|, 1) + 1) + 1 ≤ |var(φ)|+ 1.

Proposition 6. There is exactly one unsatisfiable
SAT test for Algorithm 4. The number of satisfiable
SAT tests is at most |var(φ)| − |BB| ≤ |var(φ)|.

As observed in [37], Algorithm 4 mostly performs
poorly when compared with the algorithms described
in previous sections. This is a consequence of negat-
ing the whole backbone estimate, which tends to re-
sult in difficult instances of SAT.

A solution to the problem of negating the whole
backbone estimate is to iteratively analyze its sub-

6

Figure 3.3: Algorithm 2 - Iterative algorithm - Two tests per variable

genipabones.cpp is a preliminary IPASIR implementation of this al-

gorithm, which is available at [Balyo, 2017]. Our refactored version of

genipabones.cpp is showed in Listing 3.2.
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Listing 3.2: IPASIRBones-2
1 int* backbones = new int[maxVar];

2 for (int i=0; i<maxVar; i++) backbones[i] = 0;

3
4 for (int lit=1; lit<=maxVar; lit++) {

5
6 ipasir_assume(solver, lit);

7 int res1 = ipasir_solve(solver);

8 satCalls++;

9 if (res1 == UNSAT) {

10 bbonesFound++;

11 backbones[lit-1] = -lit;

12 ipasir_add(solver, -lit);

13 ipasir_add(solver, 0);

14 }

15
16 ipasir_assume(solver, -lit);

17 int res2 = ipasir_solve(solver);

18 satCalls++;

19 if (res2 == UNSAT) {

20 bbonesFound++;

21 backbones[lit-1] = lit;

22 ipasir_add(solver, lit);

23 ipasir_add(solver, 0);

24 }

25
26 if (res1==UNSAT && res2==UNSAT) {

27 printf("UNSAT formula (literal: %d), exiting...\n", lit);

28 exit(-1);

29 }

30
31 }

The screenshot in Figure 3.4 shows the result of running Algorithm 2

on buildroot.cnf. A noticeable observation with respect to Algorithm 1’s

execution, shown in Figure 3.2, is the higher number of SAT calls, leading

to a longer execution time.

Figure 3.4: Running Algorithm 2 on buildroot.cnf
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3.1.3 Algorithm 3: Iterative testing - One test per variable

The definition of backbone itself provides a clue on how to improve the

backbone computation performance by reducing the number of SAT calls:

backbone variables must be present in every satisfiable solution always

with the same literal. The third algorithm in Figure 3.5 takes advantage

of this fact, by first computing a satisfiable solution and then perform-

ing an iterative test for each of those particular solution literals. In each

step of the loop, the SAT-solver is called with the complementary of the

literal (Line 6). If that instance is not satisfiable, then the literal is added

to the backbone estimate (Line 8), removed from the candidate list (Line

9), and added as one unit clause to the formula (Line 10). If the SAT call

is satisfiable, for each variable the literal from the current backbone esti-

mate is checked with the solution literal. If the literals from both sides are

different, then the literal is removed from the backbone estimate.

Algorithm 3: Iterative algorithm (one test per variable)

Input : Satisfiable formula φ
Output: Backbone of φ, νR

1 (outc, ν)← SAT(φ)
2 Λ← ν // SAT tests planned

3 νR ← ∅ // Initial backbone lower bound

4 while Λ 6= ∅ do
5 l← pick a literal from Λ // Pick a literal to test

6 (outc, ν)← SAT(φ ∪ { l̄ }) // Test if l is a backbone

7 if outc = false then
// Backbone identified

8 νR ← νR ∪ { l } // Add l to the backbone estimate

9 Λ = Λ r { l } // l does not need to be tested anymore

10 φ← φ ∪ { l }
11 else
12 Λ← Λ ∩ ν // Literal filtering

13 return νR

sets. This process consists of splitting the backbone
estimate into chunks of some size K as presented in
Algorithm 5. The algorithm has the same structure
as Algorithm 4 but instead of adding a clause of the
size of the whole backbone estimate, a clause of sizeK
is added. The intuition behind this clause is “show
that at least one of the literals in the chunk is not a
backbone literal.”

Interestingly, the use of chunks covers both Al-
gorithm 4, when a single chunk is used, and Algo-
rithm 3, when chunks of size 1 are used.

Proposition 7. Algorithm 4 corresponds to Algo-
rithm 5 with chunk size |var(φ)|. Algorithm 3 corre-
sponds to Algorithm 5 with chunk size 1.

4.4 Core-based Algorithm

In the previous algorithms we compute the backbone
using the following pattern. First, we find some im-
plicant ν, which gives us an initial estimate of the
backbone. All the literals that do not appear in ν are
not in the backbone. The literals that do appear in ν
might be in the backbone. To prove or disprove that

certain literal l ∈ ν is in the backbone, we try to flip
it. More precisely, we try to find a different implicant
that contains the complementary literal.

The key question is how to look for this other im-
plicant. In Algorithm 5 we look for an implicant that
flips at least one of the literals in ν. In this section, we
take a different approach that tries to flip all literals
in ν at the same time. If we are lucky and we manage
to do that, we show that there are no backbone lit-
erals and the algorithm terminates after 2 SAT calls.
This is illustrated by the following example.

Example 2. Let φ = {x ∨ y, x̄ ∨ ȳ} and ν = {x, ȳ}.
The set ν is an implicant of φ; flipping all its literals
yields ν′ = {x̄, y} Since ν′ is also an implicant of φ,
the backbone of φ is empty.

In general, however, it is not possible to flip all the
literals at the same time. Consequently, the proposed
algorithm gradually reduces the set of literals that it
tries to flip. In order to decide which literals should
no longer be flipped, the algorithm assumes that the
SAT solver is capable of giving us a core—a set of
clauses responsible for unsatisfiability.

7

Figure 3.5: Algorithm 3 - One test per variable
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That way, the resulting IPASIR-based code is listed at 3.3. Note that

the code has been accommodated to store the backbone in a dedicated

array (Line 1), while also performing a SAT call to identify an initial upper

bound (Line 4) as done with previous algorithms. This algorithm performs

a maximum of n+1 SAT calls, that is, the initial one (Line 4) to set up the

upper bound plus one more for each literal of the upper bound (Line 15).

This algorithm also implements literal filtering (Lines 23 to 28), comparing

all literals from the upper backbone estimate pending to check with the

current SAT solution and discarding those which are different.

Listing 3.3: IPASIRBones-3
1 int* backbones = new int[maxVar];

2 for (int i=0; i<maxVar; i++) backbones[i] = 0;

3
4 ipasir_solve(solver);

5 satCalls++;

6 int* sat_solution = new int[maxVar];

7 for (int lit = 1; lit <= maxVar; lit++) {

8 sat_solution[lit-1] = ipasir_val(solver, lit);

9 }

10
11 for (int i = 0; i < maxVar; i++) {

12 int candidate = sat_solution[i];

13 if (candidate == 0) continue;

14 ipasir_assume(solver, -candidate);

15 int res = ipasir_solve(solver);

16 satCalls++;

17 if (res == UNSAT) {

18 bbonesFound++;

19 backbones[i] = candidate;

20 ipasir_add(solver, candidate);

21 ipasir_add(solver, 0);

22 } else {

23 for (int lit = i+1; lit < maxVar; lit++) {

24 if ( (sat_solution[lit] != 0)

25 && (sat_solution[lit] != ipasir_val(solver, lit+1)) ) {

26 sat_solution[lit] = 0;

27 }

28 }

29 }

30 }

Figure 3.6 shows the execution of Algorithm 3 on buildroot.cnf. It

reveals a dramatic reduction in the number of SAT calls when compared

to Algorithm 2 (Figure 3.4), with 180.160 SAT calls for Algorithm 2 versus

22,158 SAT calls for Algorithm 3. This is a result of the combined effect of
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reducing the initial upper bound backbone estimate to half plus the literal

filtering. This lower number of SAT calls also leads to shorter execution

times.

Figure 3.6: Running Algorithm 3 on buildroot.cnf

3.1.4 Algorithm 4: Iterative algorithm with the comple-

ment of backbone estimate

This algorithm, shown in Figure 3.7, also starts populating the initial back-

bone estimate from the solution of a first SAT call (Lines 1-2), being it

the upper bound of the backbone. Then it loops until there are no more

elements in the initial backbone estimate to test. In every loop, the SAT-

solver is called adding the complement of the backbone at the time as an

additional clause (Line 4). If the SAT call is not satisfiable, the current

backbone estimated is returned as the backbone (Line 6). Otherwise, lit-

eral filtering is applied to the backbone estimate.

Listing 3.4 shows our IPASIR implementation of Algorithm 4. First,

the initial backbone estimate is computed (Lines 2 to 9), followed by the

iterative loop. In order to temporarily add the backbone estimate to the
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Algorithm 4: Iterative algorithm with complement of backbone estimate

Input : Satisfiable formula φ
Output: Backbone of φ, νR

1 (outc, ν)← SAT(φ)
2 νR ← ν // Initial backbone estimate

3 while νR 6= ∅ do
4 (outc, ν)← SAT(φ ∪ {∨l∈νR l̄ })
5 if outc = false then
6 return νR // Terminate if unsatisfiable

7 νR ← νR ∩ ν // Refine backbone estimate

8 return νR

Definition 4 (core). For an unsatisfiable formula φ,
a formula ψ ⊆ φ is called a core iff ψ is unsatisfiable.

Remark 3. Observe that the definition of a core
does not guarantee any type of minimality. Indeed,
if a formula φ is unsatisfiable, the whole φ is al-
ready a core. In practice, however, state-of-the-art
SAT solvers return cores significantly smaller than
the given formula. Nevertheless, any correct algo-
rithm must account for cases where the returned core
contains superfluous clauses, i.e. clauses whose re-
moval yields another core.

Consider some set of non-contradictory literals L
that form a superset of the backbone. To determine
if they can be flipped, we call a SAT solver on the
formula φ ∪⋃l∈L{ l̄ }. If the call is unsatisfiable, i.e.
the literals cannot be flipped, the corresponding core
gives us some subset of literals that cannot be flipped.

There is one special case worth noting. If the core
contains a negation of a single literal from L, then
this literal is a backbone literal.

Proposition 8. Let φ be a satisfiable formula and L
be a set of literals such that φ∧∧k∈L k̄ is unsatisfiable.
A literal l ∈ L is in the backbone of φ iff there is a
core ψ of φ ∧∧k∈L k̄ for which ψ ⊆ φ ∧ l̄.

There is another special case that we need to take
into account and that is when the core contains all
literals to be flipped. In such case the core-based

algorithm cannot be used and it reverts to one of the
algorithms described earlier.

Since the upcoming algorithm requires the SAT
solver to return a core, we extend the function
SAT(φ) to return a triple (outc, ν, C), where outc and
ν have the same meaning as before, and C is a core
of φ if outc = false.

Algorithm 6 shows a pseudocode for the above pre-
sented ideas. The algorithm maintains its computa-
tion state in three variables. The variable Λ contains
those literals that still might be in the backbone (but
we are not sure). The variable νR contains literals
that have been shown to be in the backbone. Finally,
the variable ωN contains the negation of some of the
literals in Λ.

Initially ωN contains the negation of all the liter-
als in Λ. As the inner loop progresses, ωN is grad-
ually reduced based on the cores obtained from the
SAT solver (line 17). Note that the algorithm utilizes
Proposition 8 in order to identify backbone literals
(lines 13–16).

The inner loop terminates either when some liter-
als from Λ were flipped (the SAT call returns true),
or the cores exhaust the set Λ, i.e. ωN is empty. If
ωN is empty, Algorithm 6 reverts to some other al-
gorithm to test whether the remaining literals are in
the backbone or not (line 19). Algorithm 3 (“one test
per variable”) is particularly suitable for this task be-
cause it is easy to instruct it to test only a set of
literals.
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Figure 3.7: Algorithm 4 - Complement of backbone estimate

formula (Lines 15 to 20), an additional variable is added to that clause

(Line 19) so that variable is first assumed with the complementary literal

(Line 21) before calling SAT and then it is set with the actual literal, there-

fore making that temporary clause always true and not affecting any later

SAT-solver calculation. As with every one of these backbone complement’s

SAT calls a new dummy variable must be used, a roll_back variable (Line

11) allocates new formula variables past the actual formula variables. Af-

ter the SAT call, literal lifting and variable lifting are applied.

Figure 3.8 shows the execution of Algorithm 4 on buildroot.cnf. A

key observation is the reduced number of SAT calls (only 8,139) compared

to Algorithm 3 (22,158 calls). But this fact does not help in reducing the

processing time, which is approximately five times higher. This is because

of the higher complexity of adding large temporary clauses and rolling

them back.
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Listing 3.4: IPASIRBones-4
1 // initial backbone estimate

2 int res = ipasir_solve(solver);

3 if (res == UNSAT)

4 exit(-1);

5 satCalls++;

6 int* sat_solution = new int[maxVar];

7 for (int lit = 1; lit <= maxVar; lit++) {

8 sat_solution[lit-1] = ipasir_val(solver, lit);

9 }

10
11 int roll_back = 1;

12 // looping with the complement of backbone estimate

13 while (true) {

14 // adding backbone complement clause

15 for (int i = 0; i < maxVar; i++) {

16 if (sat_solution[i] != 0)

17 ipasir_add(solver, -sat_solution[i]);

18 }

19 ipasir_add(solver, maxVar + roll_back);

20 ipasir_add(solver, 0);

21 ipasir_assume(solver, -(maxVar + roll_back));

22 res=ipasir_solve(solver);

23
24 if (res == UNSAT) {

25 break; // terminate loop if UNSAT

26 }

27 // refine backbone estimate

28 for (int lit = 1; lit <= maxVar; lit++) {

29 if (sat_solution[lit-1] != 0) {

30 if (sat_solution[lit-1] != ipasir_val(solver, lit)) {

31 sat_solution[lit-1] = 0;

32 }

33 }

34 }

35 ipasir_add(solver, maxVar + roll_back);

36 ipasir_add(solver, 0);

37 roll_back++;

38 }

Figure 3.8: Running Algorithm 4 on buildroot.cnf
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3.1.5 Algorithm 5: Chunking

While the previous algorithm picked up one single literal, negated it, and

called the SAT-solver to check satisfiability or perform literal filtering, the

chunking algorithm in Figure 3.9 picks several literals (Lines 5-6), a chunk,

negates them and calls the SAT-solver (Line 7). With the response, it per-

forms literal filtering if SAT-solver returns satisfiable (Line 13). In the less

probable event that SAT call returns unsatisfiable, then all literals in the

chunk used for the call are part of the backbone (Lines 8 to 11). Note the

SAT call requires temporarily adding a clause with the negation of each

literal in the chunk.

Algorithm 5: Chunking algorithm

Input : Satisfiable formula φ, with variables X; K ∈ N+ chunk size
Output: Backbone of φ, νR

1 (outc, ν)← SAT(φ)
2 νR ← ∅ // Initial backbone lower bound

3 Λ← ν // Initial literals to test

4 while Λ 6= ∅ do
5 k ← min(K, |Λ|)
6 Γ← pick k literals from Λ
7 (outc, ν)← SAT(φ ∪ {∨l∈Γ l̄ })
8 if outc = false then

// All literals in chunk are backbones

9 νR ← νR ∪ Γ // Add Γ to lower bound.

10 Λ← Λ r Γ // Literals in Γ do not need to be tested anymore.

11 φ← φ ∪ {{ l } | l ∈ Γ}
12 else
13 Λ← Λ ∩ ν

14 return νR

Example 3. Let φ = {x ∨ y, u ∨ v, w} and ν =
{x, y, ū, v, w}. Invoking SAT on φ∧ x̄∧ ȳ ∧ u∧ v̄ ∧ w̄
gives a core {w, w̄}. The core lets us infer that w
is a backbone literal by Proposition 8. Invoking SAT
on φ ∧ x̄ ∧ ȳ ∧ u ∧ v̄ gives a core {x ∨ y, x̄, ȳ} hence
we remove the requirement x̄ ∧ ȳ. Invoking SAT on
φ∧u∧ v̄ yields an implicant flipping the value of both
u and v thus showing they are not backbone literals.

The next iteration of the outer loop invokes SAT on
φ ∧ x̄ ∧ ȳ yielding again the core {x ∨ y, x̄, ȳ}, which
contains all the remaining literals to be flipped and
we revert to one of the other algorithms.

Algorithm 6 suffers from the fact that it tries to
flip too many literals at the same time and therefore
it might take too long before it finds a satisfying as-
signment. In response to this issue, again we apply
the idea of chunking. The chunking version of the al-
gorithm in each iteration picks a chunk of the literals
that still might be in the backbone and tries to flip
those at the same time. This is repeated until there
are no literals that might be in the backbone.

Algorithm 7 presents a chunking version of Algo-

rithm 6. The structure of the algorithm is similar
to the one of Algorithm 6 with the exception that in
each iteration of the outer loop it tries to flip only
some chunk of literals Γ. Note that the inner loop
operates on the complement of Γ stored in the vari-
able ωN . Using unsatisfiable cores, the set ωN is be-
ing reduced until some subset of the literals in Γ is
flipped. The special case is again when ωN becomes
empty and then we revert to another algorithm to
test literals in Γ. Unit cores are treated just as in
Algorithm 6.

Observe that the algorithm coincides with the it-
erative algorithm (Algorithm 3) when K = 1 just as
the chunking algorithm (Algorithm 5).

Here we should make an important remark about
the core computation. In general, computing a core
might bring in some computational inefficiency. In
this concrete case, however, there is no practical ef-
ficiency penalty. This is because we are computing
a core of the formula φ ∧ ∧l∈L l for some set of lit-
erals L and moreover we are only interested in the
intersection of the core with the literals from L. SAT
solvers based on the interface of minisat2.2 enable

9

Figure 3.9: Algorithm 5 - Chunking Algorithm

Listing 3.5 shows our IPASIR implementation of Algorithm 5, which

follows a similar approach to Algorithm 4 to solve the issue by calling the

SAT-solver with a temporary clause consisting of the or of the negation of

each literal in the chunk.
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Listing 3.5: IPASIRBones-5
1 int chunk_size = 100;

2 if (argc > 2 ) {

3 chunk_size = atoi(argv[2]);

4 } else {

5 printf("Using default chuck size: %d", chunk_size);

6 printf(" => Add as command Line argument any other value.\n");

7 }

8 int roll_back = maxVar + 1;

9 int pos = 0;

10 for (int i = 0; vars_tested < maxVar; ) {

11 // printf("Vars tested: %d. Rollback: %d \n", vars_tested, roll_back+1);

12 roll_back++;

13 for (int k = 0; (k < chunk_size) && (pos < maxVar); pos++) {

14 if (sat_solution[pos] != 0) {

15 ipasir_add(solver, -sat_solution[pos]);

16 k++;

17 }

18 }

19 ipasir_add(solver, roll_back);

20 ipasir_add(solver, 0);

21 // roll_back clause:

22 ipasir_assume(solver, -roll_back);

23 int res = ipasir_solve(solver);

24 satCalls++;

25 if (res == UNSAT) { // all literals in the chunk are backbones

26 pos = i;

27 // printf("UNSAT: i=%d, pos=%d, Found= %d => ", i, pos, bbonesFound);

28 for (int k = 0; (k < chunk_size) && (pos < maxVar); pos++) {

29 if (sat_solution[pos] != 0) {

30 bbonesFound++;

31 // printf("BB= %d, ", sat_solution[pos]);

32 backbones[pos] = sat_solution[pos];

33 ipasir_add(solver, sat_solution[pos]) ;

34 ipasir_add(solver, 0);

35 sat_solution[pos] = 0;

36 vars_tested++;

37 k++;

38 }

39
40 }

41 // printf("UNSAT: i=%d, pos=%d, Found=%d, Tested=%d\n",

42 // i, pos, bbonesFound, vars_tested);

43 } else { // SAT

44 // check below lit = i

45 // printf("SAT: i=%d, pos=%d\n", i, pos);

46 for (int lit = i; lit < maxVar; lit++) {

47 if (sat_solution[lit] != 0) {

48 // below includes val return 0 valid for lit and -lit

49 if (sat_solution[lit] != ipasir_val(solver, lit+1)) {

50 sat_solution[lit] = 0;

51 vars_tested++;

52 }

53 }

54 }

55 }

56 // rolling back:

57 ipasir_add(solver, roll_back);

58 ipasir_add(solver, 0);

59 i = pos ;

60 if (i >= maxVar) {

61 i = 0;

62 pos = 0;

63 }

64 }
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This is solved by adding a roll-back variable (Line 9). Negated literals

in the chunk are added as a clause into the formula (Lines 15 to 20). Then,

the roll-back variable is added (Line 21) before storing the clause into the

SAT-solver (Line 22). Before performing the call, that variable is negated

as done with others in the chunk (Line 24), but using an assume. After the

SAT call, at the end of the loop, the roll-back variable is added to the solver

(Lines 61-62) to cancel the temporarily added clause effectively.

The screenshot in Figure 3.10 shows the execution results of Algorithm

5, the chunking algorithm, using buildroot.cnf model. So far, this algo-

rithm needed the lowest number of SAT calls, but the time to complete

still is bigger than Algorithm 3.

Figure 3.10: Running Algorithm 5 on buildroot.cnf

3.1.6 Algorthm 6: Core-based Algorithm

Algorithm 6 in Figure 3.11 uses the idea of flipping all and each literal

pending to test and adding it to the solver as a single literal clause before

every SAT-solver call. This is a similar approach to Algorithm 3, iterative -

one test per variable (Figure 3.5), which takes one literal each time. Core-
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based, instead, takes all literals pending to check (Lines 5-7). If the result

is satisfiable, literal filtering is applied (Lines 8-10). Otherwise, the literal

from the core is added to the backbone lower bound, removed from the

pending list, and added as a unit clause to the formula (Lines 13-17). The

algorithm includes a provision in case SAT-solver is not able to properly

identify the core (Lines 18-20).

Algorithm 6: Core-based Algorithm

Input : Satisfiable formula φ
Output: Backbone of φ, νR

1 (outc, ν, C)← SAT(φ)
2 νR ← ∅ // Initial backbone lower bound

3 Λ← ν // Initial literals to test

4 while Λ 6= ∅ do
5 ωN ←

{
l̄ | l ∈ Λ

}

6 while true do
7 (outc, ν, C)← SAT(φ ∪ { { l } | l ∈ ωN})
8 if outc = true then
9 Λ← Λ ∩ ν

10 break // Move onto a different set of literals to flip

11 else
12 assert(C ∩ ωN 6= ∅) // φ must be satisfiable

13 if C ∩ ωN = { l } then
// The core contains a single literal from ωN

14 νR ← νR ∪ { l̄ }
15 Λ← Λ r { l̄ }
16 φ← φ ∪ { l̄ }
17 ωN ← {p | p ∈ ωN ∧ {p} /∈ C} // Remove from ωN literals that appear in the core

18 if ωN = ∅ then
19 test literals in Λ by another algorithm
20 return νR

21 return νR

computing precisely that by enabling passing the lit-
erals L as assumptions. Those assumptions that are
part of the core are then returned in the final conflict
clause [8].

5 Backbone Filtering

With the exception of Algorithm 2, all the algorithms
utilize implicants to prune the backbone estimate. In-
deed, according to Proposition 1, if ν is an implicant
then any literal l /∈ ν is not in the backbone. Con-
sequently, the less literals an implicant contains, the
more literals are filtered out from the backbone esti-
mate. However, modern SAT solvers compute com-

plete assignments, i.e. implicants that contain a lit-
eral for each variable [24]. Thus, for the purpose of
backbone filtering it might be useful to see if some of
these literals are not redundant.

Example 4. Let φ = {x∨y, x∨ z̄} and ν = {x, y, z̄}.
The set ν is an implicant of φ but so is the singleton
set {x }.

Different techniques can be used for removing liter-
als from computed implicants. One example is vari-
able lifting [29]. Lifting consists of analyzing each
variable and discarding the variable if it is not used
for satisfying any clause. Another technique is (ap-
proximate) set covering [29]. The goal is to com-
pute an implicant ν′ ⊆ ν such that for any impli-
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Figure 3.11: Algorithm 6 - Core based

To make no modification to the formula/model, then that variable has

to be added as a single-clause literal to the formula to make sure that

added clause is always true and does not make any change in the formula.

This method has two main issues:

• It requires more SAT calls, more complicated because of the number
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of clauses

• It makes SAT computations harder, as those added fake clauses might

require more effort from SAT-solver.

However, this approach does not achieve good performance, as we will

see in Chapter 4. Additionally, all SAT-solvers tested with IPASIR returned

only one conflicting literal from the core, which limits the possibilities for

performance improvement. Listing 3.6 shows our IPASIR implementa-

tion.

Note two IPASIR function calls to ipasir_failed and ipasir_add

near in the code. According to IPASIR, ipasir_failed can only be called

when SAT-solver is in UNSAT state, which is the case in the code (Line 34),

but a call to ipasir_add, would change that state. This is why the loop is

broken at Line 53 after the first failed literal has been found (Line 47).

ipasir_failed return value in other SAT stages is not specified otherwise.

The screenshot in Figure 3.12 shows the execution results of Algo-

rithm 6 on buildroot.cnf. It involves a higher number of SAT calls

(22,158) when compared to other algorithms, even worse than Algorithm

3.2, which took 1 minute and 9.56 seconds for 7,815 SAT calls.
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Listing 3.6: IPASIRBones-6
1 int* backbones = new int[maxVar];

2 for (int b=0; b<maxVar; b++) {

3 backbones[b] = 0;

4 }

5
6 int res = ipasir_solve(solver);

7 satCalls++;

8 int* sat_solution = new int[maxVar];

9 for (int lit = 1; lit <= maxVar; lit++) {

10 sat_solution[lit-1] = ipasir_val(solver, lit);

11 }

12
13
14 ///////////////////////////////////////////

15
16 for (int i = 0; i < maxVar; i++) {

17 if (sat_solution[i] == 0) continue;

18
19 for (int j=i; j < maxVar; j++) {

20 if (sat_solution[i] != 0)

21 ipasir_assume(solver, -sat_solution[i]);

22 }

23
24 int res = ipasir_solve(solver);

25 satCalls++;

26 if (res == SAT) {

27 for (int lit = i+1; lit < maxVar; lit++) {

28 if (sat_solution[lit] != 0) {

29 if (sat_solution[lit] != ipasir_val(solver, lit+1)) {

30 sat_solution[lit] = 0;

31 }

32 }

33 }

34 } else {

35 // checking for core. IPASIR returns 1

36 for (int lit = i; lit < maxVar; lit++) {

37 if ( sat_solution[lit] != 0) {

38 if ( ipasir_failed(solver, lit+1)==1 ) {

39 printf("%d => %d => %d\n", i, lit, ipasir_failed(solver, lit

+1));

40 }

41 }

42 }

43 for (int lit = i; lit < maxVar; lit++) {

44 if ( sat_solution[lit] != 0) {

45 // printf("Pos= %6d, Lit=%6d, Failed=%2d, Value=%6d\n",

46 // i, lit, ipasir_failed(solver, lit+1),

sat_solution[lit] );

47 if ( ipasir_failed(solver, lit+1)==1 ) {

48 bbonesFound++;

49 backbones[lit] = sat_solution[lit];

50 ipasir_add(solver, sat_solution[lit]);

51 ipasir_add(solver, 0);

52 sat_solution[lit] = 0;

53 break;

54 }

55 }

56 }

57 }

58 }
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Figure 3.12: Running Algorithm 6 on buildroot.cnf

3.1.7 Algorthm 7: Core-based Algorithm with Chunking

Algorithm 7 in Figure 3.13 is basically a mix of Algorithm 5 and Algorithm

6, so instead of flipping all pending literals at once, it only flips a fixed

Algorithm 7: Core-based Algorithm with Chunking

Input : Satisfiable formula φ; K ∈ N+ chunk size
Output: Backbone of φ, νR

1 (outc, ν, C)← SAT(ϕ)
2 νR ← ∅ // Initial backbone lower bound

3 Λ← ν // Initial literals to test

4 while Λ 6= ∅ do
5 k ← min(K, |Λ|)
6 Γ← pick k literals from Λ

7 ωN ←
{
l̄ | l ∈ Γ

}

8 while true do
9 (outc, ν, C)← SAT(ϕ ∪ { { l } | l ∈ ωN})

10 if outc = true then
11 Λ← Λ ∩ ν
12 break // Done with the chunk

13 else
14 if C ∩ ωN = { l } then

// The core contains a single literal from ωN.

15 νR ← νR ∪ { l̄ }
16 Λ← Λ r { l̄ }
17 φ← φ ∪ { l̄ }
18 ωN ← {p | p ∈ ωN ∧ {p} /∈ C} // Remove from ωN literals that appear in the core.

19 if ωN = ∅ then
20 test literals in Γ by another algorithm
21 Λ = Λ r Γ
22 break // Done with the chunk

23 return νR

cant ν′′ ⊆ ν it holds that |ν′| ≤ |ν′′|. This problem
translates directly to the set cover problem because
ν′ has to be a minimal set of literals such that it
has a nonempty intersection with each clause of φ.
Since the set cover problem is NP-hard, approximate
solutions are often used. One example is a greedy
approximation algorithm for the set cover problem
(e.g. [5]).

In the following we refer to these techniques (lift-
ing, set cover) as implicant reduction, i.e. we say that
an implicant ν was reduced to an implicant ν′ and
thus filtering out the literals ν r ν′ from the back-
bone estimate.

Here we develop another technique for filtering
non-backbone literals, which we call rotatable liter-
als. We show that this technique is strictly stronger
than implicant reduction.

Consider an implicant where flipping (rotating) the
value of some variable x yields another implicant.
This gives us two different implicants that show that
neither x nor x̄ is a backbone literal.

Definition 5 (rotatable literal). Let ν be an impli-
cant of φ and l be a literal s.t. l ∈ ν. Let ν′ be defined
as ν′ = ν r {l} ∪ {l̄}. The literal l is rotatable in ν
iff ν′ is an implicant of φ.
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Figure 3.13: Algorithm 7 - Core based with chunking
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amount of them (Lines 5 and 6), therefore also working with chunks as

Algorithm 5.

Listing 3.7 shows our IPASIR implementation, requiring a roll back

clause so all literals in the block can be negated and added as single clause

or clause, and later this clause can be deactivated with an assume call.

Listing 3.7: IPASIRBones-7
1 int chunk_size = 100;

2 int pending = maxVar;

3 if (argc > 2 ) {

4 chunk_size = atoi(argv[2]);

5 printf("Using supplied chunk size: %d\n", chunk_size);

6 } else {

7 printf("Using default chunk size: %d\n", chunk_size);

8 }

9 int roll_back = 1;

10 while (pending != 0) {

11 for (int i = 0; i < maxVar; i++) {

12 if (sat_solution[i] == 0) continue;

13 for (int lit = i; (lit<maxVar) && (lit<i+chunk_size); lit++) {

14 if (sat_solution[lit] != 0)

15 ipasir_add(solver, -sat_solution[lit]);

16 }

17 ipasir_add(solver, maxVar + roll_back);

18 ipasir_add(solver, 0);

19 ipasir_assume(solver, -(maxVar + roll_back));

20 int res = ipasir_solve(solver);

21 satCalls++;

22 if (res == SAT) {

23 for (int lit = 0; lit<maxVar; lit++) {

24 if (sat_solution[lit] != 0) {

25 if (sat_solution[lit] != ipasir_val(solver, lit+1)) {

26 sat_solution[lit] = 0;

27 pending--;

28 }

29 }

30 }

31 } else {

32 for (int lit=i; (lit<maxVar) && (lit<i+chunk_size); lit++) {

33 if ( sat_solution[lit] != 0) {

34 bbonesFound++;

35 backbones[lit] = sat_solution[lit];

36 ipasir_add(solver, sat_solution[lit]);

37 ipasir_add(solver, 0);

38 sat_solution[lit] = 0;

39 pending--;

40 }

41 }

42 }

43 ipasir_add(solver, maxVar + roll_back);

44 ipasir_add(solver, 0);

45 roll_back++;

46 }

47 }
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The screenshot in Figure 3.14 shows the execution results of Algorithm

7, the core-based with chunking algorithm, using buildroot.cnf model.

Note that chunk size has been set to 100 since this is the default value in

minibones [Janota et al., 2015] and EDUCIBones [Zhang et al., 2020].

Figure 3.14: Running Algorithm 7 on buildroot.cnf

3.2 Heuristics

This section describes several heuristics to improve Algorithms 1-7 perfor-

mance. Although some of them were already introduced in the previous

section, they are not bound to any specific algorithm, and thus they could

be used in new algorithms. These heuristics target at performing back-

bone filtering, equivalently implicant reduction, that is, identifying vari-

ables or literals which are not backbone candidates and can be skipped

during testing, so the number of SAT calls and computation effort in eval-

uating them is reduced. Examples described below are the literal filtering

[Janota et al., 2015], and also the identification of one-literal clauses dur-

ing the CNF/DIMACS file load as backbones, which is a heuristic we have

not found in the backbone literature.
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The insertion of the backbone into the formula is not properly a reduction

of the implicant size nor does identify a backbone, but it does improve

performance.

3.2.1 Insertion of the backbone into the formula

A heuristic to speed up backbone computation is inserting the backbone

literal into the formula (SAT-solver object) once it has been found as such

(Listing 3.8). This is done by calling ipasir_add function with the newly

identified backbone literal first and then calling again with 0. This will

have the same effect as adding a clause to the CNF formula of the DI-

MACS file only composed of the literal number plus the zero:

Listing 3.8: Heuristic: Adding backbones to the formula
1 if (res == UNSAT) {

2 bbonesFound++;

3 backbones[i] = new_backbone_literal;

4 ipasir_add(solver, new_backbone_literal);

5 ipasir_add(solver, 0);

6 }

3.2.2 Literal filtering

During the iterative process of checking if each literal is in the backbone or

not, the SAT-solver is called in every loop. When the result is satisfiable, a

new solution is available, which might be different from the ones obtained

before. Checking literals from that new solution and comparing them to

the existing upper bound will help reduce the number of checks. If the

literal obtained for the new satisfiable solution is different from the literals

obtained in previous satisfiable solutions (upper bound) then that variable
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cannot be part of the backbone. Listing 3.9 shows an IPASIR-based code.

Note that this check loop is only needed for variables not yet processed in

order to improve performance, as the goal is to identify which ones of the

pending variables are backbone candidates. Variables found as not a valid

candidate for the backbone are identified with a 0 value, meaning it can

be skipped during further variable checks, therefore saving a SAT call in

that case.

Listing 3.9: Heuristic: Code for literal filtering
1 for (int lit = i+1; lit < maxVar; lit++) {

2 if ( (sat_solution[lit] != 0) &&

3 (sat_solution[lit] != ipasir_val(solver, lit+1)) ) {

4 sat_solution[lit] = 0;

5 }

6 }

For this heuristics to work, a sat_solution array is kept, which stores

the results of the first satisfiable call performed. Then, after every SAT call

with satisfiable result, variables are checked and updated to 0 when they

are no longer backbone candidates (upper bound).

3.2.3 Identification of one-literal clauses

When reading the CNF/DIMACS file, identify those clauses consisting of

a single literal. Therefore they are part of the backbone (if the formula/-

model is satisfiable), so no need to make any checks with them. Adding

those literals to the formula will identify backbones beforehand without

performing any SAT call (Listing 3.10). The empirical analysis of formu-

las for configuration models shows a high percentage of backbone literals

appearing as one-literal clauses in the original formula. For example, the

buildroot.cnf model, used in the previous section to illustrate the algo-
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rithms’ execution, has 16.783 unary clauses out of a total of 16.834 back-

bone literals. Additional model analysis is provided at table 3.1.

Listing 3.10: Heuristic: Identification of one-literal clauses from CNF/DI-

MACS file
1 // add to the solver

2 ipasir_add(solver, num);

3 if (num==0) {

4 if (numcount==1) {

5 // a clause with only one literal, then it is a backbone

6 bblist.push_back(lastnum);

7 }

8 numcount=0;

9 } else {

10 lastnum = num;

11 numcount++;

12 }

3.2.4 Cascading CNF literals

A step forward from the previous heuristics is to perform a cascaded anal-

ysis of the literals of the CNF formula as they are read from the DIMACS

file. The process will consist of several loops, performing the following

tasks until no change is made in a loop:

• Select a clause.

• If the clause has a single literal clause, add the literal to the backbone

list.

• If the clause has several literals, for each one check if the comple-

mentary literal is a backbone.

• If all complementary literals are backbones except one, add that lit-

eral to backbone.

This heuristic was coded in a Ruby script (Listing 3.11) to perform an

empirical evaluation of its impact.
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Listing 3.11: Cascading Literals
1 Dir.glob(’*.cnf’) do |dimacs|

2 model_time = Time.now

3 input_lines = File.read(dimacs)

4 puts "Model: #{dimacs}"

5 backbones = Array.new(0)

6 bb_count = 0

7 bb_candidates_count = 0

8 bb_candidate = 0

9 num_loop = 0

10
11 while true

12 new_backbones = 0

13 num_loop += 1

14 input_lines.each_line do |line|

15 if line =~ /^[c]/

16 # skip

17 elsif line =~ /^p cnf/

18 problem = line.split(" ")

19 num_vars = problem[2]

20 num_clauses = problem[3]

21 if num_vars == 0

22 puts("Num cnf variables: #{num_vars}")

23 puts("Num cnf clauses : #{num_clauses}")

24 end

25 else

26 literals = line.split(" ")

27 literals.each do |lit|

28 int_lit = lit.to_i

29 if int_lit != 0

30 if backbones[int_lit.abs].nil? and bb_candidates_count==0

31 bb_candidate = int_lit

32 bb_candidates_count += 1

33 elsif backbones[int_lit.abs] == int_lit*(-1)

34 # this candidate is the negation of a backbone, good to go

35 elsif (bb_candidates_count > 0) and backbones[int_lit.abs].nil?

36 break # more than one candidate, not useful...

37 else

38 break # this lit is already in backbone

39 end

40 elsif int_lit == 0

41 if bb_candidates_count == 1

42 backbones[bb_candidate.abs] = bb_candidate

43 bb_count += 1

44 new_backbones += 1

45 end

46 end

47 end

48 bb_candidates_count = 0

49 bb_candidate = 0

50 end

51 end

52 puts "Loop #{num_loop} => #{new_backbones} backbones found."

53 break if new_backbones == 0

54 end

55 puts "Backbone count: #{bb_count}"

56 puts "Processing time: #{Time.now - model_time}s."

57 backbones.each { |bb| print "#{bb} " unless bb.nil? }

58 print "\n"

59 end

Table 3.1 analyzes the result of identifying backbones directly from the

CNF/DIMACS file at the time of file reading. [Fernandez-Amoros et al.,
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2023] used this model set in configuration management and software en-

gineering domain.

Table 3.1: Direct backbone identification from CNF formula

Model
Backbone

Size

One-lit
Clauses

Cascading CNF Literals

Backbones Loop 1 Loop 2 Loop 3 Backbones Time (s.)
axtls 127 127 127 0 0 127 0,0120
buildroot 16.834 16783 16.790 0 0 16.790 1,4350
busybox 762 713 714 0 0 714 0,1018
coreboot 20.966 16012 16.020 0 0 16.020 2,7228
embtoolkit 4.422 4383 4.389 0 0 4.389 0,5606
fiasco 111 93 93 0 0 93 0,0064
freetz 10.093 9504 9.504 0 0 9.504 1,8116
linux 27.239 23368 22.306 7 0 22.313 6,1762
toybox 74 74 74 0 0 74 0,0054
uClibc 383 381 383 0 0 383 0,0322

3.2.5 Coding and performance

Despite the improvement obtained by the different algorithms and the

heuristics above, some authors have also identified other means to im-

prove performance. [Mitchell, 2005] identified improvements factors in

the range from 3 to 8 by using cache aware implementations. Some direc-

tions provided are:

• Reduce the memory footprint

• Use arrays instead of pointers.

• Store data in memory in the same sequence it will be accessed.

Our IPASIR implementation follows these directions and implements

required data structures in arrays instead of C++ vectors, which make an

extensive use of pointer. In addition, those data structures will be later

accessed in a sequential way.
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3.3 Tweaking the Algorithms

This section provides improved versions of the algorithms in Section 3.1.

While the algorithms themselves are not changing dramatically, the heuris-

tics and code enhancements significantly reduce the computing time:

• Identification as backbones all those literals from clauses with that

one literal. This is done while reading the source CNF/DIMACS file.

• Backbone insertion: Adding backbones as a single literal clause to

the formula when it has been identified as such after the SAT call

returns.

• Literal lifting: After a satisfiable SAT-solver call, compare all vari-

ables pending for backbone checking with the results of the SAT-

solver. If, for a given variable, its literal from the last SAT-solver

solution differs from the literal from the initial SAT solution, any of

the two literals for that variable can be part of the backbone.
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3.3.1 Enhancing Algorithm 3 - Version a

This version of Algorithm 3 includes the three following heuristics (List-

ing 3.12):

Listing 3.12: IPASIRBones-3a
1 int* backbones = new int[maxVar];

2 for (int i=0; i<maxVar; i++) backbones[i] = 0;

3
4 ipasir_solve(solver);

5 satCalls++;

6 int* sat_solution = new int[maxVar];

7 for (int lit = 1; lit <= maxVar; lit++) {

8 sat_solution[lit-1] = ipasir_val(solver, lit);

9 }

10
11 for (size_t b=0; b<bblist.size(); b++) {

12 if (backbones[abs(bblist[b])-1] == 0) {

13 bbonesFound++;

14 backbones[abs(bblist[b])-1] = bblist[b];

15 sat_solution[abs(bblist[b])-1] = 0;

16 }

17 }

18 printf("\nc Initializing %d unary clauses as backbones\n", bbonesFound);

19
20 for (int i = 0; i < maxVar; i++) {

21 int candidate = sat_solution[i];

22 if (candidate == 0) continue;

23 ipasir_assume(solver, -candidate);

24 int res = ipasir_solve(solver);

25 satCalls++;

26 if (res == UNSAT) {

27 bbonesFound++;

28 backbones[i] = candidate;

29 ipasir_add(solver, candidate);

30 ipasir_add(solver, 0);

31 } else {

32 for (int lit = i+1; lit < maxVar; lit++) {

33 if ( (sat_solution[lit] != 0) && (sat_solution[lit]

34 != ipasir_val(solver, lit+1)) ) {

35 sat_solution[lit] = 0;

36 }

37 }

38 }

39 }

Figure 3.15 shows a notable reduction of SAT calls’ (5.375 from 22.158)

when compared to Algorithm 3 (Listing 3.3). While these SAT calls seem

to be easy, as it is reflected only with a small execution time reduction

(∼ −1s.). As these are only preliminary evaluations, a complete analysis

using other solvers will be done in Chapter 4.
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Figure 3.15: Execution of Algorithm 3a with buildroot.cnf model

3.3.2 Enhancing Algorithm 7 - Version a

Algorithm 7 can be tweaked in the same way that Algorithm 3 (3.5): adding

detection of backbones by identifying one-literal clauses at the time of

reading the DIMACS file. Listing 3.13 shows this enhanced version.

In this case, our preliminary evaluations (Figure 3.16) do not show any

time improvement when used with the minisat220 SAT-solver.

Interestingly, when the cadicalsc2020 SAT-solver is used, the time re-

duction is dramatic (Figure 3.17).
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Listing 3.13: IPASIRBones-7a
1 for (size_t b=0; b<bblist.size(); b++) {

2 if (backbones[abs(bblist[b])-1] == 0) {

3 bbonesFound++;

4 pending--;

5 backbones[abs(bblist[b])-1] = bblist[b];

6 sat_solution[abs(bblist[b])-1] = 0;

7 }

8 }

9 printf("\nc Initializing %d unary clauses as backbones\n", bbonesFound);

10
11 while (pending != 0) {

12 for (int i = 0; i < maxVar; i++) {

13 if (sat_solution[i] == 0) continue;

14 for (int lit = i; (lit<maxVar) && (lit<i+chunk_size); lit++) {

15 if (sat_solution[lit] != 0)

16 ipasir_add(solver, -sat_solution[lit]);

17 }

18 ipasir_add(solver, maxVar + roll_back);

19 ipasir_add(solver, 0);

20 ipasir_assume(solver, -(maxVar + roll_back));

21
22 int res = ipasir_solve(solver);

23 satCalls++;

24 if (res == SAT) {

25 for (int lit = 0; lit<maxVar; lit++) {

26 if (sat_solution[lit] != 0) {

27 if (sat_solution[lit] != ipasir_val(solver, lit+1)) {

28 sat_solution[lit] = 0;

29 pending--;

30 }

31 }

32 }

33 } else {

34 for (int lit=i; (lit<maxVar) && (lit<i+chunk_size); lit++) {

35 if ( sat_solution[lit] != 0) {

36 bbonesFound++;

37 backbones[lit] = sat_solution[lit];

38 ipasir_add(solver, sat_solution[lit]);

39 ipasir_add(solver, 0);

40 sat_solution[lit] = 0;

41 pending--;

42 }

43 }

44 }

45 ipasir_add(solver, maxVar + roll_back);

46 ipasir_add(solver, 0);

47 roll_back++;

48 }

49 }
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Figure 3.16: Execution of Algorithm 7a with buildroot.cnf model

Figure 3.17: Execution of algorithm 7a (cadicalsc2020 solver) with buil-

droot.cnf model
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Chapter 4: Experimental Validation

This chapter reports an in-depth empirical evaluation of our IPASIR pro-

grams, presented in Chapter 3. First, Section 4.2 evaluates each IPASIR

program with a variety of SAT-solvers, thus identifying (i) what solver

works best for each program, and (ii) what program/solver has the best

performance. Later, Section 4.3 compares our best program/solver with

two state-of-the-art backbone detection tools: minibones [Janota et al., 2015]

and EDUCIBone [Zhang et al., 2020].

4.1 Experimental Setup

Our evaluation targets two Research Questions:

RQ1: Best IPASIRBones/SAT combination What combination of IPASIRBones

program and SAT-solver achieves the best time performance?

RQ2: IPASIRBones vs. state-of-the-art tools What is the IPASIRBones’ time

performance compared to minibones and EDUCIBone?

To do so, we started developing our IPASIRBones’ prototypes on a PC.

The IPASIR environment was set up using the distribution available from

[Balyo, 2017], which is the one used in most SAT competitions. As this

distribution is Linux-based, it was installed in an Ubuntu instance of the
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Windows Subsystem for Linux 2 (WSL2), running under Windows 11.

Once the prototypes were tested in a PC, their performance was eval-

uated in a cluster provided by the UNED GISS1 research group, which

is equipped with an IntelTM XeonTM CPU E5-2660 v4 2.00GHz with 28

physical cores with 2 threads each one and 220.3 GiB of available RAM

memory for the operating system, an Ubuntu Release 20.04.5 LTS 64-

bit with Kernel Linux 5.4.0-135 generic x86_64. Note that the captures

and values used in Chapter 3 were taken from the development machine,

whereas the captures and values in this current chapter were taken from

the GISS cluster.

Our benchmark was composed of two sets of configuration models

taken from relevant literature on software engineering and software prod-

uct lines:

1. MIG: 116 configuration models proposed in [Krieter et al., 2018]

[Krieter et al., 2021], and also used in [Plazar et al., 2019].

2. FA: 10 configuration models provided in [Fernandez-Amoros et al.,

2023].

The standard IPASIR distribution includes, by default, interfaces with

the following SAT-solvers:

• lingelingbcj

• minisat220

• picosat961

Additionally, the following SAT-solver interfaces were selected for evalu-

ation:
1http://www.issi.uned.es/giss

http://www.issi.uned.es/giss
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• From SAT Competition 2020, cadicalsc2020 [Biere et al., 2020]

• From SAT Competition 2017, glucose4 [Audemard and Simon, 2017]

abcdsat_i20 [Balyo et al., 2020] was also evaluated, but after some pre-

liminary executions, we noticed its performance with IPASIR was out of

range when compared to the other solvers. Table 4.1 shows the average ex-

ecution time (100 loops) of IPASIRBones-3 for the MIG set of models using

the different SAT-solvers. As a result, abcdsat_i20 was discarded.

Table 4.1: abcdsat_i20 compared to other SAT-solvers with IPASIRBones-3

Program SAT-solver Average Time (s.)
IPASIRBones-3 abcdsat_i20 79.87948
IPASIRBones-3 cadicalsc2020 0.01967
IPASIRBones-3 glucose4 0.08300
IPASIRBones-3 lingelingbcj 0.17038
IPASIRBones-3 minisat220 0.07710
IPASIRBones-3 picosat961 0.22023

The actual backbone computation was managed via an R script (List-

ing 4.1 ) , which reads a configuration file indicating the number of loops

(executions of individual backbone programs solver and model combina-

tions), the source path for the backbone programs and the source path

for the model set. Note that all the loops for the 5 backbone programs

for a particular algorithm were executed with a single script call on all

the models from the provided model set. The computation part of ev-

ery model-backbone program combination, taking advantage of the high

number of cores of the computer, was performed in parallel, therefore

saving time during evaluation. The time elapsed for both MIG and FA

model sets was actually more than 10 times smaller than the overall total
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CPU CORE time in all algorithms. Executions for minibones and EDUCI-

Bone had a lower parallel multiplier due to they were only two solvers in

the set while each algorithm had five SAT-solvers to run. Table 4.2 shows

the elapsed time for each algorithm, the aggregated CPU time used for

computing the backbones during that elapsed time, and the multiplier for

those timings.

Listing 4.1: run_tests.R
1 library(doParallel)

2 library(foreach)

3 library(iterators)

4 library(tidyverse)

5
6 print(str_c("Started: ", Sys.time()))

7 # Reading configuration settings from file

8 args = commandArgs(trailingOnly=TRUE)

9 if (is.na(args[1])) {

10 stop("Missing configuration file!")

11 } else {

12 # Read configuration file

13 config_str <- read_file(args[1])

14 num_loops <- str_extract(config_str, "num_loops\\s*=\\s*(\\d+)", group=1)

15 cpu_cores <- str_extract(config_str, "cpu_cores\\s*=\\s*(\\d+)", group=1)

16 model_path <- str_trim(str_extract(

17 config_str, "model_path\\s*=\\s*(.+)(\\s*\\n)", group=1))

18 solver_path <- str_trim(str_extract(

19 config_str, "solver_path\\s*=\\s*(.+)(\\s*\\n)", group=1))

20 num_loops <- as.numeric(num_loops)

21 cpu_cores <- as.numeric(cpu_cores)

22 }

23
24 # Function processing and getting time/results from IPASIRBones

25 get_run_time <- function(

26 solver = "" # backbones-SAT-solver executable, include full path

27 , model = "" # model file name, include .cnf or .dimacs extension

28 , arg_str = "" # argument string

29 , solver_path = "" # path to solver executable

30 , model_path = "" # path to model file

31 , get_cmd_out = FALSE # return all output from command

32
33 ) {

34 # Optimized for Linux. Check: decimal point in "real time" and bash/cmd:

35 runcmd <- str_c( "-c \"time ", solver_path, "/", solver, arg_str, " "

36 , model_path, "/", model, "> /dev/null \"" )

37 # cat("Running: ", model, "with:", runcmd, "\n")

38 system2_out <- system2("bash", runcmd, stdout=FALSE, stderr=TRUE)

39 cmd_out <- str_flatten(system2_out, collapse="\n")

40 mins <- str_extract(cmd_out, "real\t(\\d+)m(\\d+)\\,(\\d+)s", group=1)

41 secs <- str_extract(cmd_out, "real\t(\\d+)m(\\d+)\\,(\\d+)s", group=2)

42 millis <- str_extract(cmd_out, "real\t(\\d+)m(\\d+)\\,(\\d+)s", group=3)

43 millis <- as.numeric(mins) * 60 + as.numeric(secs) + as.numeric(millis) / 1000

44 model_vars <- str_extract(cmd_out

45 , "(c Formula Variables\\s*:\\s*)(\\d+)", group=2)

46 model_clauses <- str_extract(cmd_out

47 , "(c Formula Clauses\\s*:\\s*)(\\d+)", group=2)

48 sat_calls <- str_extract(cmd_out

49 , "(c SAT-solver calls\\s*:\\s*)(\\d+)", group=2)
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50 backbone_size <- str_extract(cmd_out

51 , "(c Backbone size\\s*:\\s*)(\\d+)", group=2)

52 list("millis"=as.numeric(millis)

53 , "solver" = solver

54 , "model" = model

55 , "sat"=attributes(system2_out)$status

56 , "sat_calls" = as.numeric(sat_calls)

57 , "variables"= as.numeric(model_vars)

58 , "clauses" = as.numeric(model_clauses)

59 , "backbones"= as.numeric(backbone_size)

60 , "cmd_out" = if (get_cmd_out) cmd_out else ""

61 )

62 }

63
64 ######################## main ##########################

65
66 out_file <- str_replace(args[1], ".cfg$", ".csv")

67 process_time <- 0

68
69 # starting paralell setup

70 registerDoParallel(cpu_cores, cores=cpu_cores)

71
72 cat("\n")

73 cat("Executing ", num_loops, "loops\n")

74 cat("Model folder: ", model_path, "\n")

75 cat("Solver folder: ", solver_path, "\n")

76 cat("CPU cores. Req/Act: ", cpu_cores, "/", getDoParWorkers(), "\n")

77 cat("Backend name/vers: ", getDoParName(), " ", getDoParVersion(), "\n")

78 cat("\n")

79
80 # Headers for csv file

81 results <- tibble(solvername= "", modelname="", numvars=0, numclauses=0

82 , arguments="" , chunksize = 0, milliseconds=0, backbones=0

83 , cmd_out= "", .rows=0)

84 write_csv(results, out_file, append=FALSE, col_names=TRUE)

85
86 # preparing iterators

87 models <- list.files(path=model_path, full.names= FALSE, recursive = TRUE)

88 solvers <- list.files(path=solver_path, full.names= FALSE, recursive = TRUE)

89
90 # main loop

91 for (solver_name in solvers) {

92 cat("Running solver>", solver_name, "...\n")

93 for (model in models) {

94 results <- foreach(s=1:num_loops, .combine=rbind

95 , .packages=c(’stringr’, ’glue’)) %dopar% {

96 res <- get_run_time(solver=solver_name, model=model

97 , "", solver_path, model_path)

98 data.frame(res[["solver"]], res[["model"]],

99 res[["variables"]], res[["clauses"]], ""

100 , 0, res[["millis"]], res[["backbones"]], res[["cmd_out"

]])

101 }

102 process_time <<- process_time + sum(results$milliseconds)

103 write_csv(results, out_file, append=TRUE, col_names=FALSE)

104 TRUE

105 }

106 }

107 warnings()

108 print(str_c("Ended: ", Sys.time()))
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Table 4.2: Elapsed computing time vs. CPU CORE Time (seconds)

Algorithm
Elapsed

time
CPU CORE

Time
Parallel

multiplier
IPASIRBones-1 19.335 203.096 10,50
IPASIRBones-2 79.088 805.557 10,19
IPASIRBones-3 2.732 30.432 11,14
IPASIRBones-4 16.104 171.561 10,65
IPASIRBones-5 4.113 48.039 11,68
IPASIRBones-6 2.976 33.057 11,11
IPASIRBones-7 2.859 33.282 11,64
IPASIRBones-3a 2.633 29.574 11,23
IPASIRBones-7a 2.832 33.074 11,68
minibones + EDUCIBone 1.943 5.796 2,98

4.2 RQ1: Best IPASIRBones/SAT combination

This section addresses the individual performance of each IPASIRBones

program by using all five SAT-solvers to identify which solver is the best

suited for each algorithm. In all cases, the same two sets of models were

used: MIG and FA, for easy and hard instances, respectively. In order to

get better statistical relevance, easy models from the MIG set will be run

in a loop of 100 repetitions, and harder models from the FA set will be run

10 times.

4.2.1 IPASIRBones-1

Figure 4.1 compares the number of variables of the model to the backbone

computing time on average. With IPASIRBones-1, all SAT-solvers have a

similar linear response in relation to the number of model variables, ex-

cept for some particular hard models. It is clearly visible that the SAT-

solver with the best performance is cadicalsc2020, while lingelingbcj gets
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the longest execution times.
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Algorithm1 − SAT performance comparison for mig model set. Variables.
116 models.100 loops

Figure 4.1: IPASIRBones1 - Time vs. variables for MIG

On the other side, Figure 4.2 performs the comparison for the FA model

set. It shows a step increase in the computation time as the number of vari-

ables increases, more visible for lingelingbcj and picosat961 SAT-solvers.

4.2.2 IPASIRBones-2

IPASIRBones-2 is not so uniform as the one for the implicant listing al-

gorithm, with a noticeable jitter in the graph (Figure 4.3. Glucose4 SAT-

solver now is not the best performer, but there are other 2 SAT-solvers with

similar performance (cadicalsc2020 and minisat220).

FA results show a more stepped increase of computing time for larger

models, but with a more linear response with respect to the number of

variables (Figure 4.4).
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Figure 4.2: IPASIRBones1 - Time vs. variables for FA
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Figure 4.3: IPASIRBones-2 - Time vs. variables for MIG
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Figure 4.4: IPASIRBones-2 - Time vs. variables for FA

4.2.3 IPASIRBones-3

As in previous cases, every model from the MIG set was executed 100

times, while big models from FA set were executed 10 times. Total accu-

mulated execution times for each model set and each SAT-solver are listed

in Table 4.3. The first conclusion from that table is that cadicalsc2020 is the

faster SAT-solver from the selected ones providing the IPASIR interface.

In addition, lingelingbcj performs comparatively worse with the smaller

models from the MIG set. All samples from this set are uniformly slower,

without any particular case accountable for such deviation.

Figures 4.5 and 4.6 show the execution results for the MIG set, cor-

relating the effect of the number of variables and the size of the back-

bone, respectively. When comparing SAT-solvers, it is clearly visible that

the best performing for this algorithm and the small and medium size of
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Table 4.3: SAT time comparison for IPASIRBones-3 (seconds)

SAT-solver MIG set FA set
cadicalsc2020 22.2 1.921
glucose4 75.5 3.649
lingelingbcj 148.0 3.778
minisat220 70,6 4.080
picosat961 212.0 10.325

the models of this set is the cadicalsc2020 SAT-solver. Another conclusion

also visible is that both, the number of variables and the size of the back-

bone are not the only dimensions driving the time required to compute

the backbone list of a model.

0.0

0.2

0.4

0.6

1200 1250 1300 1350 1400
Number of variables

T
im

e 
(s

ec
on

ds
)

solvername

cadicalsc2020

glucose4

lingelingbcj

minisat220

picosat961

Algorithm3 − SAT performance comparison for mig model set. Variables.
116 models.100 loops

Figure 4.5: IPASIRBones-3 - Time vs. variables for MIG

Figures 4.7 and 4.8 show the effect of the number of variables and the

size of the backbone, respectively for the FA model set. When comparing

SAT-solvers, it is also clearly visible that the best performing for this al-
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Figure 4.6: IPASIRBones-3 - Time vs. backbones for MIG

gorithm now for the big size of the models of this set is the cadicalsc2020

SAT-solver. For bigger models, time increase is not so pronounced as in

IPASIRBones-2, specially for the best performer SAT-solver, the green one.

4.2.4 IPASIRBones-4

For IPASIRBones-4, cadicalsc2020 is again the best SAT-solver for MIG,

followed by glucose4 and minisat220. It also presents some small peaks

for the same models that made it harder for previous algorithms (Figure

4.5). Lingelingbcj is the worst performer for this algorithm, with higher

peaks on harder MIG models. For bigger models from FA set (Figure 4.7),

glucose4 and minisat220 have slightly lower times than cadicalsc2020.
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Figure 4.7: IPASIRBones-3 - Time vs. variables for FA
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Figure 4.9: IPASIRBones-4 - Time vs. variables for MIG
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Figure 4.10: IPASIRBones-4 - Time vs. variables for FA



60 Chapter 4: Experimental Validation

4.2.5 IPASIRBones-5

IPASIRBones-5 presents a flat response time (Figure 4.11) when executed

with MIG model set, having models in the range from 1.100 to 1.400 vari-

ables. Best SAT performer, cadicals2020 also provides lower jitter in com-

puting time, while lingelingbcj presents higher variances for some mod-

els. In respect to harder models from fernandez model set, again cadi-

calsc2020 SAT-solver presents the flattest computation time (Figure 4.14)

and picosat961 quickly increases required computation time.
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Figure 4.11: IPASIRBones-5 - Time vs. variables for MIG

4.2.6 IPASIRBones-6

For IPASIRBones-6, SAT-solvers cadicalsc2020 and lingelingbcj must be dis-

carded since, despite the algorithm being the same for all SAT-solvers,
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Figure 4.12: IPASIRBones-5 - Time vs. variables for FA

these two produce wrong results. This failure is due to the call made to

ipasir_failed() used in combination with a previous call to ipasir_assume()

does not produce correct results.

Therefore, for IPASIRBones-6, best SAT-solvers are minisat220, followed

by glucose4.

4.2.7 IPASIRBones-7

SAT-solvers for IPASIRBones-7 follow the same pattern as in the previous

ones, with cadicalsc2020 as the best performer for all models (Figures 4.15

and 4.16).
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Figure 4.13: IPASIRBones-6- Time vs. variables for MIG
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Figure 4.14: IPASIRBones-6- Time vs. variables for FA
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Figure 4.15: IPASIRBones-7 - Time vs. variables for MIG
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Figure 4.16: IPASIRBones-7 - Time vs. variables for FA
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4.2.8 Enhanced Algorithms: IPASIRBones-3a&7a

The SAT-solvers for these programs follow the same pattern as in the pre-

vious ones, with cadicalsc2020 as the best performer for all models. Plots

for algorithm 3a are displayed in Figures 4.5 and 4.7. Plots for algorithm

7a are shown in Figures 4.15 and 4.16.
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Figure 4.17: IPASIRBones-3a- Time vs. variables for MIG

4.2.9 Conclusions on individual algorithms

Our experimental results show a high degree of variability among the al-

gorithms, SAT-solvers, and model sizes, which makes it difficult to select

a unique IPASIRBones/SAT-solver combination fitting all scenarios. Table

4.5 shows a detailed overview of those results. Each row provides the total

time for the MIG set and the FA model set plus the total computation time.
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Figure 4.18: IPASIRBones-3a- Time vs. variables for FA

0.0

0.2

0.4

0.6

0.8

1200 1250 1300 1350 1400
Number of variables

T
im

e 
(s

ec
on

ds
)

solvername

ipasirbones7a−cadicalsc2020

ipasirbones7a−glucose4

ipasirbones7a−lingelingbcj

ipasirbones7a−minisat220

ipasirbones7a−picosat961

Algorithm7a − SAT performance comparison for mig model set. Variables.
116 models.100 loops

Figure 4.19: IPASIRBones-7a - Time vs. variables for MIG
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Figure 4.20: IPASIRBones-7a - Time vs. variables for FA

Each total is calculated as the sum of the average time to compute the

backbone of each model in the set. Models for MIG were computed 100

times each before calculating the individual model average and models

for FA were also computed 10 times each before calculating that average.

Times are expressed in seconds.

With respect to each individual program, Table 4.4 shows the best

solver times.

Overall best algorithm and SAT-solver combination are the IPASIRBones-

7a and IPASIRBones-7 algorithms working with cadicalsc2020 SAT-solver.

Anyhow, the combination of the IPASIRBones-3 and IPASIRBones-3a algo-

rithms together with cadicalsc2020 SAT-solver also achieved similar per-

formance. Note that SAT-solver lingelingbcj was not considered for IPASIR-

Bones-6as this SAT-solver fails as described in 4.2.6.
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Table 4.4: Best solver per algorithm (seconds)

Algorithm SAT-solver MIG FA Total
IPASIRBones-1 minisat220 2765 11911 14676
IPASIRBones-2 cadicalsc2020 4359 86384 90743
IPASIRBones-3 cadicalsc2020 233 1920 2153
IPASIRBones-3a cadicalsc2020 235 1917 2153
IPASIRBones-4 glucose4 3086 10441 13527
IPASIRBones-5 cadicalsc2020 259 2162 2421
IPASIRBones-6 cadicalsc2020 259 3056 3314
IPASIRBones-7 cadicalsc2020 233 1793 2026
IPASIRBones-7a cadicalsc2020 235 1760 1995

4.3 RQ2: IPASIRBones vs. state-of-the-art tools

There are other specialized tools in computing the backbone from a given

formula in CNF format. The most outstanding one [Janota et al., 2015]

is minibones, and another one is EDUCIBone [Zhang et al., 2020]. This

section will perform a comparison between the best performers IPASIR-

Bonesprograms described in Section 4.2.9 and these two.

Minibones and EDUCIBone have also been evaluated under the same

conditions and model sets as the IPASIRBones programs, both have been

evaluated to separately compute MIG and fernandez model sets, executing

a loop of 100 repetitions for each model from MIG model set and exe-

cution a loop of 10 repetitions for each model from fernandez model set.

Then, the average for the executions of each model was calculated, and

finally, all those averages for each model set were summed. Algorithms 5

and 7, the ones based on chunks, require an input value as the chunk size.

Given that both, Minibones and EDUCIBone use 100 as the default value

for the chunk size, our IPASIRBones programs have been also setup to use

same chunk size value by default.
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Table 4.5: Total times for the different algorithms and solvers (seconds)

algorithm solvername MIG FA total
IPASIRBones-1 minisat220 2765 11911 14676
IPASIRBones-1 glucose4 3511 11270 14781
IPASIRBones-1 picosat961 4743 32889 37632
IPASIRBones-1 cadicalsc2020 368 42480 42848
IPASIRBones-1 lingelingbcj 7178 85980 93158
IPASIRBones-2 cadicalsc2020 4359 86384 90743
IPASIRBones-2 lingelingbcj 6620 105937 112558
IPASIRBones-2 glucose4 3469 119817 123285
IPASIRBones-2 minisat220 3973 161067 165040
IPASIRBones-2 picosat961 10799 303131 313930
IPASIRBones-3 cadicalsc2020 233 1920 2153
IPASIRBones-3 glucose4 983 3629 4612
IPASIRBones-3 minisat220 916 4106 5022
IPASIRBones-3 lingelingbcj 2010 3790 5800
IPASIRBones-3 picosat961 2572 10273 12845
IPASIRBones-3a cadicalsc2020 235 1917 2153
IPASIRBones-3a glucose4 970 3529 4499
IPASIRBones-3a minisat220 919 4055 4974
IPASIRBones-3a lingelingbcj 2020 3140 5161
IPASIRBones-3a picosat961 2562 10226 12787
IPASIRBones-4 glucose4 3086 10441 13527
IPASIRBones-4 minisat220 2892 11897 14789
IPASIRBones-4 picosat961 4670 20004 24674
IPASIRBones-4 cadicalsc2020 250 57965 58215
IPASIRBones-4 lingelingbcj 7312 53045 60357
IPASIRBones-5 cadicalsc2020 259 2162 2421
IPASIRBones-5 glucose4 2162 5998 8160
IPASIRBones-5 minisat220 2236 7802 10037
IPASIRBones-5 lingelingbcj 3567 8096 11664
IPASIRBones-5 picosat961 3522 12235 15757
IPASIRBones-6 lingelingbcj 2277 201 2478
IPASIRBones-6 cadicalsc2020 259 3056 3314
IPASIRBones-6 minisat220 994 4515 5508
IPASIRBones-6 glucose4 1338 6436 7774
IPASIRBones-6 picosat961 2653 11330 13983
IPASIRBones-7 cadicalsc2020 233 1793 2026
IPASIRBones-7 glucose4 1450 4065 5515
IPASIRBones-7 minisat220 1447 4672 6119
IPASIRBones-7 lingelingbcj 2604 4098 6702
IPASIRBones-7 picosat961 2898 10021 12919
IPASIRBones-7a cadicalsc2020 235 1760 1995
IPASIRBones-7a glucose4 1460 3967 5427
IPASIRBones-7a minisat220 1451 4769 6220
IPASIRBones-7a lingelingbcj 2625 3923 6548
IPASIRBones-7a picosat961 2927 9957 12884
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Visualizations resulting from this experimental evaluation are shown

in Figure 4.21 and 4.22.

A visual inspection of these two plots unveils a similar pattern to the

ones seen for the IPASIRBones programs: time evolution for the MIG set

(with the number of variables ranging from 1100 to 1400), is mostly flat

or slightly increasing, except for a reduced number of models, apparently

harder than the others. In relationship to the FA model set, EDUCIBone

shows the same exponential increase pattern as seen in the IPASIRBones

programs but, on the other side minibones is able to manage a high number

of variables with a small linear increase pattern instead of an exponential

time increase.
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Figure 4.21: Other tools - Time vs. variables for MIG

Figure 4.6 provides the total computing time for these tools, in sec-

onds. Minibones can be clearly identified as the best performer backbone
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Figure 4.22: Other tools - Time vs. variables for FA

Table 4.6: Other tools performance (seconds)

Backbone tool MIG set FA set Total
EDUCIBone 892 3391 4283
minibones 262 1251 1513

computation tool. Although some IPASIRBones programs provide better

performance for the MIG model set than the minibones tool, overall all

other tools except minibones do not perform so well on very big mod-

els. EDUCIBone times are far from minibones and the best ipasirbones

algorithms-solver combinations.

Figure 4.7 shows the final ranking, reflecting the facts discussed above,

with minibones at the top, followed by most IPASIRBones programs and

EDUCIBone. The list ends with the worst IPASIRBones programs (the ones
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based on IPASIRBones-4, IPASIRBones1 and IPASIRBones-2).

Table 4.7: Final performance comparison table (seconds)

Solver name MIG set FA set Total
minibones 262 1251 1513
IPASIRBones-7a-cadicalsc2020 235 1760 1995
IPASIRBones-7-cadicalsc2020 233 1793 2026
IPASIRBones-3-cadicalsc2020 233 1920 2153
IPASIRBones-3a-cadicalsc2020 235 1917 2153
IPASIRBones-5-cadicalsc2020 259 2162 2421
IPASIRBones-6-cadicalsc2020 259 3056 3314
EDUCIBone 892 3391 4283
IPASIRBones-4-glucose4 3086 10441 13527
IPASIRBones-1-minisat220 2765 11911 14676
IPASIRBones-2-cadicalsc2020 4359 86384 90743
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5
Chapter 5: Conclusions and Future Work

5.1 Conclusions

Our work has provided IPASIRBones, an IPASIR-based implementation of

diverse algorithms to incrementally compute the backbone of propositional

formulas, which may encode configuration or any other kind of model. As

shown in Chapter 1, backbones are what in the software product line liter-

ature is called the core and the dead features of a configuration model. As

our implementation works incrementally, processing the model can con-

tinue after the backbone has been computed, for example by adding new

clauses to the formula or new assumptions. This makes this approach suit-

able for interactive solutions or being embedded into other applications.

Thanks to the IPASIR interface, IPASIRBones can take advantage of any

SAT-solver that complies with the standard. So if a new SAT-solver is de-

signed and the interface is provided, any application previously developed

can be linked to that new SAT-solver without requiring re-coding.

The reported experimental validation identifies the best-performing

configurations of IPASIRBones (underlying algorithm + SAT-solver) and

compared them to two state-of-the-art backbone computing tools. The re-

sults show that IPASIRBones performs better than EDUCIBone, but mini-

bones still beats IPASIRBones in huge industrial models.
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5.2 Future Work

We envision two main lines of future work:

• IPASIRBones has been tested with the most relevant IPASIR-compati-

ble SAT-solvers. Nevertheless, there are many other SAT-solvers that

can be adapted to use this interface. In addition, every year new

solvers are submitted to SAT competitions, which are a source of

new developments. Some other SAT-solvers have native parallel ca-

pabilities, and none have been used here. Regardless of new solvers,

backbone computation algorithms and heuristics can be improved.

• IPASIR-based implementations are well suited, not only to be used

in providing back-end support for visual feature modeling tools, but

also to be used to automate feature modeling tasks in general. In par-

ticular, future work can be directed toward managing the tasks fol-

lowing the identification of those core and dead features, like check-

ing new features and their dependencies or conflicts while still using

the same solver instance used for the backbone.
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